Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays.

Identifieur interne : 000422 ( Main/Exploration ); précédent : 000421; suivant : 000423

Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays.

Auteurs : Jessica L. Erickson ; Jörg Ziegler ; David Guevara ; Steffen Abel ; Ralf B. Klösgen ; Jaideep Mathur ; Steven J. Rothstein ; Martin H. Schattat [Allemagne]

Source :

RBID : pubmed:24886417

Descripteurs français

English descriptors

Abstract

BACKGROUND

Agrobacterium tumefaciens-based transient assays have become a common tool for answering questions related to protein localization and gene expression in a cellular context. The use of these assays assumes that the transiently transformed cells are observed under relatively authentic physiological conditions and maintain 'normal' sub-cellular behaviour. Although this premise is widely accepted, the question of whether cellular organization and organelle morphology is altered in Agrobacterium-infiltrated cells has not been examined in detail. The first indications of an altered sub-cellular environment came from our observation that a common laboratory strain, GV3101(pMP90), caused a drastic increase in stromule frequency. Stromules, or 'stroma-filled-tubules' emanate from the surface of plastids and are sensitive to a variety of biotic and abiotic stresses. Starting from this observation, the goal of our experiments was to further characterize the changes to the cell resulting from short-term bacterial infestation, and to identify the factor responsible for eliciting these changes.

RESULTS

Using a protocol typical of transient assays we evaluated the impact of GV3101(pMP90) infiltration on chloroplast behaviour and morphology in Nicotiana benthamiana. Our experiments confirmed that GV3101(pMP90) consistently induces stromules and alters plastid position relative to the nucleus. These effects were found to be the result of strain-dependant secretion of cytokinin and its accumulation in the plant tissue. Bacterial production of the hormone was found to be dependant on the presence of a trans-zeatin synthase gene (tzs) located on the Ti plasmid of GV3101(pMP90). Bacteria-derived cytokinins were also correlated with changes to both soluble sugar level and starch accumulation.

CONCLUSION

Although we have chosen to focus on how transient Agrobacterium infestation alters plastid based parameters, these changes to the morphology and position of a single organelle, combined with the measured increases in sugar and starch content, suggest global changes to cell physiology. This indicates that cells visualized during transient assays may not be as 'normal' as was previously assumed. Our results suggest that the impact of the bacteria can be minimized by choosing Agrobacterium strains devoid of the tzs gene, but that the alterations to sub-cellular organization and cell carbohydrate status cannot be completely avoided using this strategy.


DOI: 10.1186/1471-2229-14-127
PubMed: 24886417
PubMed Central: PMC4062310


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays.</title>
<author>
<name sortKey="Erickson, Jessica L" sort="Erickson, Jessica L" uniqKey="Erickson J" first="Jessica L" last="Erickson">Jessica L. Erickson</name>
</author>
<author>
<name sortKey="Ziegler, Jorg" sort="Ziegler, Jorg" uniqKey="Ziegler J" first="Jörg" last="Ziegler">Jörg Ziegler</name>
</author>
<author>
<name sortKey="Guevara, David" sort="Guevara, David" uniqKey="Guevara D" first="David" last="Guevara">David Guevara</name>
</author>
<author>
<name sortKey="Abel, Steffen" sort="Abel, Steffen" uniqKey="Abel S" first="Steffen" last="Abel">Steffen Abel</name>
</author>
<author>
<name sortKey="Klosgen, Ralf B" sort="Klosgen, Ralf B" uniqKey="Klosgen R" first="Ralf B" last="Klösgen">Ralf B. Klösgen</name>
</author>
<author>
<name sortKey="Mathur, Jaideep" sort="Mathur, Jaideep" uniqKey="Mathur J" first="Jaideep" last="Mathur">Jaideep Mathur</name>
</author>
<author>
<name sortKey="Rothstein, Steven J" sort="Rothstein, Steven J" uniqKey="Rothstein S" first="Steven J" last="Rothstein">Steven J. Rothstein</name>
</author>
<author>
<name sortKey="Schattat, Martin H" sort="Schattat, Martin H" uniqKey="Schattat M" first="Martin H" last="Schattat">Martin H. Schattat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Abteilung Pflanzen Physiologie, Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, Halle/Saale 06120, Germany. martin.schattat@pflanzenphys.uni-halle.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Abteilung Pflanzen Physiologie, Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, Halle/Saale 06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>Halle/Saale 06120</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24886417</idno>
<idno type="pmid">24886417</idno>
<idno type="doi">10.1186/1471-2229-14-127</idno>
<idno type="pmc">PMC4062310</idno>
<idno type="wicri:Area/Main/Corpus">000399</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000399</idno>
<idno type="wicri:Area/Main/Curation">000399</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000399</idno>
<idno type="wicri:Area/Main/Exploration">000399</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays.</title>
<author>
<name sortKey="Erickson, Jessica L" sort="Erickson, Jessica L" uniqKey="Erickson J" first="Jessica L" last="Erickson">Jessica L. Erickson</name>
</author>
<author>
<name sortKey="Ziegler, Jorg" sort="Ziegler, Jorg" uniqKey="Ziegler J" first="Jörg" last="Ziegler">Jörg Ziegler</name>
</author>
<author>
<name sortKey="Guevara, David" sort="Guevara, David" uniqKey="Guevara D" first="David" last="Guevara">David Guevara</name>
</author>
<author>
<name sortKey="Abel, Steffen" sort="Abel, Steffen" uniqKey="Abel S" first="Steffen" last="Abel">Steffen Abel</name>
</author>
<author>
<name sortKey="Klosgen, Ralf B" sort="Klosgen, Ralf B" uniqKey="Klosgen R" first="Ralf B" last="Klösgen">Ralf B. Klösgen</name>
</author>
<author>
<name sortKey="Mathur, Jaideep" sort="Mathur, Jaideep" uniqKey="Mathur J" first="Jaideep" last="Mathur">Jaideep Mathur</name>
</author>
<author>
<name sortKey="Rothstein, Steven J" sort="Rothstein, Steven J" uniqKey="Rothstein S" first="Steven J" last="Rothstein">Steven J. Rothstein</name>
</author>
<author>
<name sortKey="Schattat, Martin H" sort="Schattat, Martin H" uniqKey="Schattat M" first="Martin H" last="Schattat">Martin H. Schattat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Abteilung Pflanzen Physiologie, Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, Halle/Saale 06120, Germany. martin.schattat@pflanzenphys.uni-halle.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Abteilung Pflanzen Physiologie, Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, Halle/Saale 06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>Halle/Saale 06120</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium tumefaciens (genetics)</term>
<term>Agrobacterium tumefaciens (metabolism)</term>
<term>Biological Assay (methods)</term>
<term>Cytokinins (pharmacology)</term>
<term>Gene Expression (drug effects)</term>
<term>Genes, Bacterial (MeSH)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Genetic Vectors (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Plastids (drug effects)</term>
<term>Plastids (metabolism)</term>
<term>Starch (metabolism)</term>
<term>Tobacco (drug effects)</term>
<term>Tobacco (metabolism)</term>
<term>Transformation, Genetic (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrobacterium tumefaciens (génétique)</term>
<term>Agrobacterium tumefaciens (métabolisme)</term>
<term>Amidon (métabolisme)</term>
<term>Cytokinine (pharmacologie)</term>
<term>Dosage biologique (méthodes)</term>
<term>Expression des gènes (effets des médicaments et des substances chimiques)</term>
<term>Gènes bactériens (MeSH)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Plastes (effets des médicaments et des substances chimiques)</term>
<term>Plastes (métabolisme)</term>
<term>Tabac (effets des médicaments et des substances chimiques)</term>
<term>Tabac (métabolisme)</term>
<term>Transformation génétique (effets des médicaments et des substances chimiques)</term>
<term>Vecteurs génétiques (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Starch</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cytokinins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression</term>
<term>Plastids</term>
<term>Tobacco</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Expression des gènes</term>
<term>Plastes</term>
<term>Tabac</term>
<term>Transformation génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Genetic Vectors</term>
<term>Plastids</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biological Assay</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
<term>Amidon</term>
<term>Plastes</term>
<term>Tabac</term>
<term>Vecteurs génétiques</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Dosage biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Cytokinine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genes, Bacterial</term>
<term>Genes, Reporter</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes bactériens</term>
<term>Gènes rapporteurs</term>
<term>Phénotype</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Agrobacterium tumefaciens-based transient assays have become a common tool for answering questions related to protein localization and gene expression in a cellular context. The use of these assays assumes that the transiently transformed cells are observed under relatively authentic physiological conditions and maintain 'normal' sub-cellular behaviour. Although this premise is widely accepted, the question of whether cellular organization and organelle morphology is altered in Agrobacterium-infiltrated cells has not been examined in detail. The first indications of an altered sub-cellular environment came from our observation that a common laboratory strain, GV3101(pMP90), caused a drastic increase in stromule frequency. Stromules, or 'stroma-filled-tubules' emanate from the surface of plastids and are sensitive to a variety of biotic and abiotic stresses. Starting from this observation, the goal of our experiments was to further characterize the changes to the cell resulting from short-term bacterial infestation, and to identify the factor responsible for eliciting these changes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Using a protocol typical of transient assays we evaluated the impact of GV3101(pMP90) infiltration on chloroplast behaviour and morphology in Nicotiana benthamiana. Our experiments confirmed that GV3101(pMP90) consistently induces stromules and alters plastid position relative to the nucleus. These effects were found to be the result of strain-dependant secretion of cytokinin and its accumulation in the plant tissue. Bacterial production of the hormone was found to be dependant on the presence of a trans-zeatin synthase gene (tzs) located on the Ti plasmid of GV3101(pMP90). Bacteria-derived cytokinins were also correlated with changes to both soluble sugar level and starch accumulation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Although we have chosen to focus on how transient Agrobacterium infestation alters plastid based parameters, these changes to the morphology and position of a single organelle, combined with the measured increases in sugar and starch content, suggest global changes to cell physiology. This indicates that cells visualized during transient assays may not be as 'normal' as was previously assumed. Our results suggest that the impact of the bacteria can be minimized by choosing Agrobacterium strains devoid of the tzs gene, but that the alterations to sub-cellular organization and cell carbohydrate status cannot be completely avoided using this strategy.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24886417</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays.</ArticleTitle>
<Pagination>
<MedlinePgn>127</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-14-127</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Agrobacterium tumefaciens-based transient assays have become a common tool for answering questions related to protein localization and gene expression in a cellular context. The use of these assays assumes that the transiently transformed cells are observed under relatively authentic physiological conditions and maintain 'normal' sub-cellular behaviour. Although this premise is widely accepted, the question of whether cellular organization and organelle morphology is altered in Agrobacterium-infiltrated cells has not been examined in detail. The first indications of an altered sub-cellular environment came from our observation that a common laboratory strain, GV3101(pMP90), caused a drastic increase in stromule frequency. Stromules, or 'stroma-filled-tubules' emanate from the surface of plastids and are sensitive to a variety of biotic and abiotic stresses. Starting from this observation, the goal of our experiments was to further characterize the changes to the cell resulting from short-term bacterial infestation, and to identify the factor responsible for eliciting these changes.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Using a protocol typical of transient assays we evaluated the impact of GV3101(pMP90) infiltration on chloroplast behaviour and morphology in Nicotiana benthamiana. Our experiments confirmed that GV3101(pMP90) consistently induces stromules and alters plastid position relative to the nucleus. These effects were found to be the result of strain-dependant secretion of cytokinin and its accumulation in the plant tissue. Bacterial production of the hormone was found to be dependant on the presence of a trans-zeatin synthase gene (tzs) located on the Ti plasmid of GV3101(pMP90). Bacteria-derived cytokinins were also correlated with changes to both soluble sugar level and starch accumulation.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Although we have chosen to focus on how transient Agrobacterium infestation alters plastid based parameters, these changes to the morphology and position of a single organelle, combined with the measured increases in sugar and starch content, suggest global changes to cell physiology. This indicates that cells visualized during transient assays may not be as 'normal' as was previously assumed. Our results suggest that the impact of the bacteria can be minimized by choosing Agrobacterium strains devoid of the tzs gene, but that the alterations to sub-cellular organization and cell carbohydrate status cannot be completely avoided using this strategy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Erickson</LastName>
<ForeName>Jessica L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ziegler</LastName>
<ForeName>Jörg</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guevara</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Abel</LastName>
<ForeName>Steffen</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Klösgen</LastName>
<ForeName>Ralf B</ForeName>
<Initials>RB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mathur</LastName>
<ForeName>Jaideep</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rothstein</LastName>
<ForeName>Steven J</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schattat</LastName>
<ForeName>Martin H</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Abteilung Pflanzen Physiologie, Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, Halle/Saale 06120, Germany. martin.schattat@pflanzenphys.uni-halle.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003583">Cytokinins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-25-8</RegistryNumber>
<NameOfSubstance UI="D013213">Starch</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001681" MajorTopicYN="N">Biological Assay</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003583" MajorTopicYN="N">Cytokinins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018087" MajorTopicYN="N">Plastids</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013213" MajorTopicYN="N">Starch</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24886417</ArticleId>
<ArticleId IdType="pii">1471-2229-14-127</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-14-127</ArticleId>
<ArticleId IdType="pmc">PMC4062310</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Plant Biol. 2011;11:115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21846357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Apr;155(4):1667-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21273446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18250230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Feb 8;132(3):449-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jul;67(1):157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21426428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 May;31(5):646-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18088332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Dec;21(12):1528-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18986249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1988 Jul-Aug;1(6):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2980282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 May;187:49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Motil Cytoskeleton. 2007 Feb;64(2):69-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17009330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 Sep;10 Suppl 1:50-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18721311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(3):379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14731258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(4):2019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1981 Jan;145(1):583-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7462151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2005 Apr;225(1-2):33-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15868211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jan 31;3:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1975 Jul 10;138(4):345-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1152843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21771917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2006;22:101-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(3):637-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17175552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Aug;8(8):380-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(9):2499-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2004 Oct;23(4):188-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15252692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microsc. 2004 May;214(Pt 2):124-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15102061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Oct;44(2):314-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2012;63:353-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22554243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Apr;24(4):1465-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1654-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Jul;182(14):3885-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10869063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jul;159(3):1064-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22589470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2012 Nov;54(11):851-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23046073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2003 Mar;67(1):16-37, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12626681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(10):2659-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(4):655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(1):e8977</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20126459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Nov;26(11):1359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24088018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(3):921-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1982 Feb 26;104(4):1560-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7073755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Biophys Methods. 2006 Apr 30;67(1):67-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16480772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 May;6(5):715-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21448009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Oct;121(2):461-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10517837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Dec 27;3:291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23293643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Mar;223(4):659-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16160843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(403):1697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Sep;63(14):5079-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22791826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Apr;42(6):819-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1228-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):3990-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15563618</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Abel, Steffen" sort="Abel, Steffen" uniqKey="Abel S" first="Steffen" last="Abel">Steffen Abel</name>
<name sortKey="Erickson, Jessica L" sort="Erickson, Jessica L" uniqKey="Erickson J" first="Jessica L" last="Erickson">Jessica L. Erickson</name>
<name sortKey="Guevara, David" sort="Guevara, David" uniqKey="Guevara D" first="David" last="Guevara">David Guevara</name>
<name sortKey="Klosgen, Ralf B" sort="Klosgen, Ralf B" uniqKey="Klosgen R" first="Ralf B" last="Klösgen">Ralf B. Klösgen</name>
<name sortKey="Mathur, Jaideep" sort="Mathur, Jaideep" uniqKey="Mathur J" first="Jaideep" last="Mathur">Jaideep Mathur</name>
<name sortKey="Rothstein, Steven J" sort="Rothstein, Steven J" uniqKey="Rothstein S" first="Steven J" last="Rothstein">Steven J. Rothstein</name>
<name sortKey="Ziegler, Jorg" sort="Ziegler, Jorg" uniqKey="Ziegler J" first="Jörg" last="Ziegler">Jörg Ziegler</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Schattat, Martin H" sort="Schattat, Martin H" uniqKey="Schattat M" first="Martin H" last="Schattat">Martin H. Schattat</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000422 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000422 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24886417
   |texte=   Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24886417" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024