Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling.

Identifieur interne : 000386 ( Main/Exploration ); précédent : 000385; suivant : 000387

The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling.

Auteurs : Dae Sung Kim [Corée du Sud] ; Yongchull Jeun ; Byung Kook Hwang

Source :

RBID : pubmed:24085708

Descripteurs français

English descriptors

Abstract

Phospholipases hydrolyze phospholipids into fatty acids and other lipophilic substances. Phospholipid signaling is crucial for diverse cellular processes in plants. However, the precise role of phospholipases in plant cell death and defense signaling is not fully understood. Here, we identified a pepper (Capsicum annuum) patatin-like phospholipase (CaPLP1) gene that is transcriptionally induced in pepper leaves by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaPLP1 containing an N-terminal signal peptide localized to the cytoplasm and plasma membrane, leading to the secretion into the apoplastic regions. Silencing of CaPLP1 in pepper conferred enhanced susceptibility to Xcv infection. Defense responses to Xcv, including the generation of reactive oxygen species (ROS), hypersensitive cell death and the expression of the salicylic acid (SA)-dependent marker gene CaPR1, were compromised in the CaPLP1-silenced pepper plants. Transient expression of CaPLP1 in pepper leaves induced the accumulation of fluorescent phenolics, expression of the defense marker genes CaPR1 and CaSAR82A, and generation of ROS, ultimately leading to the hypersensitive cell death response. Overexpression (OX) of CaPLP1 in Arabidopsis also conferred enhanced resistance to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis infection. CaPLP1-OX leaves showed reduced Pst growth, enhanced ROS burst and electrolyte leakage, induction of the defense response genes AtPR1, AtRbohD and AtGST, as well as constitutive activation of both the SA-dependent gene AtPR1 and the JA-dependent gene AtPDF1.2. Together, these results suggest that CaPLP1 is involved in plant defense and cell death signaling in response to microbial pathogens.

DOI: 10.1007/s11103-013-0137-x
PubMed: 24085708


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling.</title>
<author>
<name sortKey="Kim, Dae Sung" sort="Kim, Dae Sung" uniqKey="Kim D" first="Dae Sung" last="Kim">Dae Sung Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713</wicri:regionArea>
<wicri:noRegion>136-713</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jeun, Yongchull" sort="Jeun, Yongchull" uniqKey="Jeun Y" first="Yongchull" last="Jeun">Yongchull Jeun</name>
</author>
<author>
<name sortKey="Hwang, Byung Kook" sort="Hwang, Byung Kook" uniqKey="Hwang B" first="Byung Kook" last="Hwang">Byung Kook Hwang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24085708</idno>
<idno type="pmid">24085708</idno>
<idno type="doi">10.1007/s11103-013-0137-x</idno>
<idno type="wicri:Area/Main/Corpus">000431</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000431</idno>
<idno type="wicri:Area/Main/Curation">000431</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000431</idno>
<idno type="wicri:Area/Main/Exploration">000431</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling.</title>
<author>
<name sortKey="Kim, Dae Sung" sort="Kim, Dae Sung" uniqKey="Kim D" first="Dae Sung" last="Kim">Dae Sung Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713</wicri:regionArea>
<wicri:noRegion>136-713</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jeun, Yongchull" sort="Jeun, Yongchull" uniqKey="Jeun Y" first="Yongchull" last="Jeun">Yongchull Jeun</name>
</author>
<author>
<name sortKey="Hwang, Byung Kook" sort="Hwang, Byung Kook" uniqKey="Hwang B" first="Byung Kook" last="Hwang">Byung Kook Hwang</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (physiology)</term>
<term>Capsicum (cytology)</term>
<term>Capsicum (enzymology)</term>
<term>Capsicum (metabolism)</term>
<term>Capsicum (microbiology)</term>
<term>Cell Death (MeSH)</term>
<term>Gene Silencing (MeSH)</term>
<term>Phospholipases (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Subcellular Fractions (enzymology)</term>
<term>Xanthomonas campestris (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrobacterium (physiologie)</term>
<term>Capsicum (cytologie)</term>
<term>Capsicum (enzymologie)</term>
<term>Capsicum (microbiologie)</term>
<term>Capsicum (métabolisme)</term>
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Fractions subcellulaires (enzymologie)</term>
<term>Mort cellulaire (MeSH)</term>
<term>Phospholipases (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Xanthomonas campestris (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phospholipases</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Capsicum</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Capsicum</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Capsicum</term>
<term>Fractions subcellulaires</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Capsicum</term>
<term>Subcellular Fractions</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Capsicum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Capsicum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Capsicum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Capsicum</term>
<term>Phospholipases</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Agrobacterium</term>
<term>Xanthomonas campestris</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Agrobacterium</term>
<term>Xanthomonas campestris</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Death</term>
<term>Gene Silencing</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Extinction de l'expression des gènes</term>
<term>Mort cellulaire</term>
<term>Phylogenèse</term>
<term>Transduction du signal</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phospholipases hydrolyze phospholipids into fatty acids and other lipophilic substances. Phospholipid signaling is crucial for diverse cellular processes in plants. However, the precise role of phospholipases in plant cell death and defense signaling is not fully understood. Here, we identified a pepper (Capsicum annuum) patatin-like phospholipase (CaPLP1) gene that is transcriptionally induced in pepper leaves by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaPLP1 containing an N-terminal signal peptide localized to the cytoplasm and plasma membrane, leading to the secretion into the apoplastic regions. Silencing of CaPLP1 in pepper conferred enhanced susceptibility to Xcv infection. Defense responses to Xcv, including the generation of reactive oxygen species (ROS), hypersensitive cell death and the expression of the salicylic acid (SA)-dependent marker gene CaPR1, were compromised in the CaPLP1-silenced pepper plants. Transient expression of CaPLP1 in pepper leaves induced the accumulation of fluorescent phenolics, expression of the defense marker genes CaPR1 and CaSAR82A, and generation of ROS, ultimately leading to the hypersensitive cell death response. Overexpression (OX) of CaPLP1 in Arabidopsis also conferred enhanced resistance to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis infection. CaPLP1-OX leaves showed reduced Pst growth, enhanced ROS burst and electrolyte leakage, induction of the defense response genes AtPR1, AtRbohD and AtGST, as well as constitutive activation of both the SA-dependent gene AtPR1 and the JA-dependent gene AtPDF1.2. Together, these results suggest that CaPLP1 is involved in plant defense and cell death signaling in response to microbial pathogens. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24085708</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>84</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling.</ArticleTitle>
<Pagination>
<MedlinePgn>329-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-013-0137-x</ELocationID>
<Abstract>
<AbstractText>Phospholipases hydrolyze phospholipids into fatty acids and other lipophilic substances. Phospholipid signaling is crucial for diverse cellular processes in plants. However, the precise role of phospholipases in plant cell death and defense signaling is not fully understood. Here, we identified a pepper (Capsicum annuum) patatin-like phospholipase (CaPLP1) gene that is transcriptionally induced in pepper leaves by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaPLP1 containing an N-terminal signal peptide localized to the cytoplasm and plasma membrane, leading to the secretion into the apoplastic regions. Silencing of CaPLP1 in pepper conferred enhanced susceptibility to Xcv infection. Defense responses to Xcv, including the generation of reactive oxygen species (ROS), hypersensitive cell death and the expression of the salicylic acid (SA)-dependent marker gene CaPR1, were compromised in the CaPLP1-silenced pepper plants. Transient expression of CaPLP1 in pepper leaves induced the accumulation of fluorescent phenolics, expression of the defense marker genes CaPR1 and CaSAR82A, and generation of ROS, ultimately leading to the hypersensitive cell death response. Overexpression (OX) of CaPLP1 in Arabidopsis also conferred enhanced resistance to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis infection. CaPLP1-OX leaves showed reduced Pst growth, enhanced ROS burst and electrolyte leakage, induction of the defense response genes AtPR1, AtRbohD and AtGST, as well as constitutive activation of both the SA-dependent gene AtPR1 and the JA-dependent gene AtPDF1.2. Together, these results suggest that CaPLP1 is involved in plant defense and cell death signaling in response to microbial pathogens. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Dae Sung</ForeName>
<Initials>DS</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jeun</LastName>
<ForeName>Yongchull</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hwang</LastName>
<ForeName>Byung Kook</ForeName>
<Initials>BK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D010740">Phospholipases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002212" MajorTopicYN="N">Capsicum</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="Y">Cell Death</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010740" MajorTopicYN="N">Phospholipases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013347" MajorTopicYN="N">Subcellular Fractions</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016959" MajorTopicYN="N">Xanthomonas campestris</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24085708</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-013-0137-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2011 Feb;23(2):823-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2004 Apr;198:267-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15199968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Apr;24(4):1675-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22492811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15281-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):447-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(5):810-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jan;13(1):136-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Apr 30;97(3):349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10319815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 May;9(5):229-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15130548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Apr;22(4):469-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19271961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Oct;13(10 ):2191-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11595796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 May;6(5):227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11335176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):2011-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Apr;46(4):579-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Sep;31(6):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12220268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Mar 2;491(3):188-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11240125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2004 Mar;6(3):201-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Mar;19(3):831-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2005 Jan;44(1):52-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15748654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Sep;47(6):947-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16925603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Dec;15(12 ):693-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20961799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Oct;9(5):515-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:229-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 Oct;268(19):5037-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11589694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 May;66(4):642-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1989 May;1(5):533-540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1997 Jun;10(6):673-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9278280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):424-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19304931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2011 Aug;18(8):1247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21475301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):332-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Jun 10;42(22):6696-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12779324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):948-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19939946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1999 Sep 10;273(2):149-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10469484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1988 May 15;252(1):199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3048246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1994 Feb 15;217(1):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8203736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:265-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(5):749-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12472690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Jul;115(3):331-335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12081524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 20;274(34):23679-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10446122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jan;125(1):94-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2004 Apr 30;17(2):377-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15179058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1991 Mar;225(3):501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1673222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1996 Apr;37(3):347-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8673343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):408-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Jan;216(3):387-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23 (3):1107-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Aug;23 (4):431-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10972869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Jan;28(1):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18850102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Sep;67(5):749-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21535260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):2230-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Nov;22(11):1389-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19810808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):890-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17905862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hwang, Byung Kook" sort="Hwang, Byung Kook" uniqKey="Hwang B" first="Byung Kook" last="Hwang">Byung Kook Hwang</name>
<name sortKey="Jeun, Yongchull" sort="Jeun, Yongchull" uniqKey="Jeun Y" first="Yongchull" last="Jeun">Yongchull Jeun</name>
</noCountry>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Kim, Dae Sung" sort="Kim, Dae Sung" uniqKey="Kim D" first="Dae Sung" last="Kim">Dae Sung Kim</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000386 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000386 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24085708
   |texte=   The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24085708" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024