Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant molecular farming of virus-like nanoparticles as vaccines and reagents.

Identifieur interne : 000028 ( Main/Exploration ); précédent : 000027; suivant : 000029

Plant molecular farming of virus-like nanoparticles as vaccines and reagents.

Auteurs : Edward P. Rybicki [Afrique du Sud]

Source :

RBID : pubmed:31486296

Abstract

The use of plants for the production of virus-like nanoparticles (VNPs) dates back to separating natural empty capsids of plant viruses from whole virions nearly 70 years ago, through to the present use of transgenic plants or recombinant Agrobacterium tumefaciens and/or plant virus-derived vectors for the transient expression of engineered viral or other structural proteins in plants-a production system also known as molecular farming. Plant production of heterologous proteins has major advantages in terms of convenience-whole plants are generally used, and processes do not need to be sterile-and cost, as bulk biomass production is significantly cheaper than by any other method. Plant-made VNPs in current use for nanotechnology include whole virions and naturally occurring empty capsids of plant viruses, and particles made by reassembly of coat protein (CP) purified from virions or by recombinant expression. Engineered VNP-forming animal or human virus CPs expressed in plants include L1 protein from human papillomaviruses, human norovirus CP, hepatitis B surface and core antigens, influenza virus HA protein and HIV Gag polyprotein forming large enveloped particles by budding, orbi- and rotavirus particles that require assembly of four co-expressed proteins, and polio- and foot and mouth disease viruses which require proteolytic processing of a polyprotein precursor to form 4-component VNPs. Both plant and animal virus-derived plant-made VNPs can be used for surface and internal display of heterologous peptides or even whole proteins. A significant recent development has been the production of pseudovirions in plants, comprising plant or animal virus CPs and RNA or DNA pseudogenomes that can be used to deliver nucleic acid payloads into cultured cells or specific tissues or tumors in whole animals. This article is characterized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > in vivo Nanodiagnostics and Imaging.

DOI: 10.1002/wnan.1587
PubMed: 31486296


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant molecular farming of virus-like nanoparticles as vaccines and reagents.</title>
<author>
<name sortKey="Rybicki, Edward P" sort="Rybicki, Edward P" uniqKey="Rybicki E" first="Edward P" last="Rybicki">Edward P. Rybicki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biopharming Research Unit, Department of Molecular & Cell Biology, University of Cape Town, Cape Town, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Biopharming Research Unit, Department of Molecular & Cell Biology, University of Cape Town, Cape Town</wicri:regionArea>
<wicri:noRegion>Cape Town</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31486296</idno>
<idno type="pmid">31486296</idno>
<idno type="doi">10.1002/wnan.1587</idno>
<idno type="wicri:Area/Main/Corpus">000076</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000076</idno>
<idno type="wicri:Area/Main/Curation">000076</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000076</idno>
<idno type="wicri:Area/Main/Exploration">000076</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant molecular farming of virus-like nanoparticles as vaccines and reagents.</title>
<author>
<name sortKey="Rybicki, Edward P" sort="Rybicki, Edward P" uniqKey="Rybicki E" first="Edward P" last="Rybicki">Edward P. Rybicki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biopharming Research Unit, Department of Molecular & Cell Biology, University of Cape Town, Cape Town, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Biopharming Research Unit, Department of Molecular & Cell Biology, University of Cape Town, Cape Town</wicri:regionArea>
<wicri:noRegion>Cape Town</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</title>
<idno type="eISSN">1939-0041</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The use of plants for the production of virus-like nanoparticles (VNPs) dates back to separating natural empty capsids of plant viruses from whole virions nearly 70 years ago, through to the present use of transgenic plants or recombinant Agrobacterium tumefaciens and/or plant virus-derived vectors for the transient expression of engineered viral or other structural proteins in plants-a production system also known as molecular farming. Plant production of heterologous proteins has major advantages in terms of convenience-whole plants are generally used, and processes do not need to be sterile-and cost, as bulk biomass production is significantly cheaper than by any other method. Plant-made VNPs in current use for nanotechnology include whole virions and naturally occurring empty capsids of plant viruses, and particles made by reassembly of coat protein (CP) purified from virions or by recombinant expression. Engineered VNP-forming animal or human virus CPs expressed in plants include L1 protein from human papillomaviruses, human norovirus CP, hepatitis B surface and core antigens, influenza virus HA protein and HIV Gag polyprotein forming large enveloped particles by budding, orbi- and rotavirus particles that require assembly of four co-expressed proteins, and polio- and foot and mouth disease viruses which require proteolytic processing of a polyprotein precursor to form 4-component VNPs. Both plant and animal virus-derived plant-made VNPs can be used for surface and internal display of heterologous peptides or even whole proteins. A significant recent development has been the production of pseudovirions in plants, comprising plant or animal virus CPs and RNA or DNA pseudogenomes that can be used to deliver nucleic acid payloads into cultured cells or specific tissues or tumors in whole animals. This article is characterized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > in vivo Nanodiagnostics and Imaging.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31486296</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-0041</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</Title>
<ISOAbbreviation>Wiley Interdiscip Rev Nanomed Nanobiotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant molecular farming of virus-like nanoparticles as vaccines and reagents.</ArticleTitle>
<Pagination>
<MedlinePgn>e1587</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/wnan.1587</ELocationID>
<Abstract>
<AbstractText>The use of plants for the production of virus-like nanoparticles (VNPs) dates back to separating natural empty capsids of plant viruses from whole virions nearly 70 years ago, through to the present use of transgenic plants or recombinant Agrobacterium tumefaciens and/or plant virus-derived vectors for the transient expression of engineered viral or other structural proteins in plants-a production system also known as molecular farming. Plant production of heterologous proteins has major advantages in terms of convenience-whole plants are generally used, and processes do not need to be sterile-and cost, as bulk biomass production is significantly cheaper than by any other method. Plant-made VNPs in current use for nanotechnology include whole virions and naturally occurring empty capsids of plant viruses, and particles made by reassembly of coat protein (CP) purified from virions or by recombinant expression. Engineered VNP-forming animal or human virus CPs expressed in plants include L1 protein from human papillomaviruses, human norovirus CP, hepatitis B surface and core antigens, influenza virus HA protein and HIV Gag polyprotein forming large enveloped particles by budding, orbi- and rotavirus particles that require assembly of four co-expressed proteins, and polio- and foot and mouth disease viruses which require proteolytic processing of a polyprotein precursor to form 4-component VNPs. Both plant and animal virus-derived plant-made VNPs can be used for surface and internal display of heterologous peptides or even whole proteins. A significant recent development has been the production of pseudovirions in plants, comprising plant or animal virus CPs and RNA or DNA pseudogenomes that can be used to deliver nucleic acid payloads into cultured cells or specific tissues or tumors in whole animals. This article is characterized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > in vivo Nanodiagnostics and Imaging.</AbstractText>
<CopyrightInformation>© 2019 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rybicki</LastName>
<ForeName>Edward P</ForeName>
<Initials>EP</Initials>
<Identifier Source="ORCID">0000-0001-8024-9911</Identifier>
<AffiliationInfo>
<Affiliation>Biopharming Research Unit, Department of Molecular & Cell Biology, University of Cape Town, Cape Town, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Wiley Interdiscip Rev Nanomed Nanobiotechnol</MedlineTA>
<NlmUniqueID>101508311</NlmUniqueID>
<ISSNLinking>1939-0041</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">VLP</Keyword>
<Keyword MajorTopicYN="Y">VNP</Keyword>
<Keyword MajorTopicYN="Y">pseudovirion</Keyword>
<Keyword MajorTopicYN="Y">virus-derived nanoparticle</Keyword>
<Keyword MajorTopicYN="Y">virus-like particle</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31486296</ArticleId>
<ArticleId IdType="doi">10.1002/wnan.1587</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Aljabali, A. A., Shukla, S., Lomonossoff, G. P., Steinmetz, N. F., & Evans, D. J. (2013). CPMV-DOX delivers. Molecular Pharmaceutics, 10(1), 3-10. https://doi.org/10.1021/mp3002057</Citation>
</Reference>
<Reference>
<Citation>Allen, M., Bulte, J. W. M., Liepold, L., Basu, G., Zywicke, H. A., Frank, J. A., … Douglas, T. (2005). Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magnetic Resonance in Medicine, 54(4), 807-812. https://doi.org/10.1002/mrm.20614</Citation>
</Reference>
<Reference>
<Citation>Animal and Plant Health Inspection Service. (2008). Noncompliance history. Retrieved from https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/SA_Compliance_And_Inspections/CT_Compliance_history</Citation>
</Reference>
<Reference>
<Citation>Aziz, M. A., Singh, S., Anand Kumar, P., & Bhatnagar, R. (2002). Expression of protective antigen in transgenic plants: A step towards edible vaccine against anthrax. Biochemical and Biophysical Research Communications, 299(3), 345-351.</Citation>
</Reference>
<Reference>
<Citation>Bancroft, J. B., Wagner, G. W., & Bracker, C. E. (1968). The self-assembly of a nucleic-acid free pseudo-top component for a small spherical virus. Virology, 36(1), 146-149.</Citation>
</Reference>
<Reference>
<Citation>Barnhill, H. N., Reuther, R., Ferguson, P. L., Dreher, T., & Wang, Q. (2007). Turnip yellow mosaic virus as a chemoaddressable bionanoparticle. Bioconjugate Chemistry, 18(3), 852-859. https://doi.org/10.1021/bc060391s</Citation>
</Reference>
<Reference>
<Citation>Beatty, P. H., & Lewis, J. D. (2019). Cowpea mosaic virus nanoparticles for cancer imaging and therapy. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2019.04.005</Citation>
</Reference>
<Reference>
<Citation>Benioff, D., & Weiss, D. B.. (2011). “It is known”: Irri, handmaiden to Daenerys Targaryen. Game of Thrones (Season 1).</Citation>
</Reference>
<Reference>
<Citation>Biemelt, S., Sonnewald, U., Galmbacher, P., Willmitzer, L., & Muller, M. (2003). Production of human papillomavirus type 16 virus-like particles in transgenic plants. Journal of Virology, 77(17), 9211-9220.</Citation>
</Reference>
<Reference>
<Citation>Brillault, L., Jutras, P. V., Dashti, N., Thuenemann, E. C., Morgan, G., Lomonossoff, G. P., … Sainsbury, F. (2017). Engineering recombinant virus-like nanoparticles from plants for cellular delivery. ACS Nano, 11(4), 3476-3484. https://doi.org/10.1021/acsnano.6b07747</Citation>
</Reference>
<Reference>
<Citation>Bruckman, M. A., Czapar, A. E., VanMeter, A., Randolph, L. N., & Steinmetz, N. F. (2016). Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. Journal of Controlled Release, 231, 103-113. https://doi.org/10.1016/j.jconrel.2016.02.045</Citation>
</Reference>
<Reference>
<Citation>Bruckman, M. A., Hern, S., Jiang, K., Flask, C. A., Yu, X., & Steinmetz, N. F. (2013). Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents. Journal of Materials Chemistry B, 1(10), 1482-1490. https://doi.org/10.1039/C3TB00461A</Citation>
</Reference>
<Reference>
<Citation>Bruckman, M. A., Jiang, K., Simpson, E. J., Randolph, L. N., Luyt, L. G., Yu, X., & Steinmetz, N. F. (2014). Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Letters, 14(3), 1551-1558. https://doi.org/10.1021/nl404816m</Citation>
</Reference>
<Reference>
<Citation>Bruckman, M. A., & Steinmetz, N. F. (2014). Chemical modification of the inner and outer surfaces of tobacco mosaic virus (TMV). Methods in Molecular Biology, 1108, 173-185. https://doi.org/10.1007/978-1-62703-751-8_13</Citation>
</Reference>
<Reference>
<Citation>Bruening, G. (1969). The inheritance of top component formation in cowpea mosaic virus. Virology, 37(4), 577-584.</Citation>
</Reference>
<Reference>
<Citation>Buck, C. B., Pastrana, D. V., Lowy, D. R., & Schiller, J. T. (2005). Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods in Molecular Medicine, 119, 445-462. https://doi.org/10.1385/1-59259-982-6:445</Citation>
</Reference>
<Reference>
<Citation>Buyel, J. F. (2015). Process development strategies in plant molecular farming. Current Pharmaceutical Biotechnology, 16(11), 966-982.</Citation>
</Reference>
<Reference>
<Citation>Buyel, J. F., Hubbuch, J., & Fischer, R. (2016). Comparison of tobacco host cell protein removal methods by blanching intact plants or by heat treatment of extracts. Journal of Visualized Experiments, (114), e54343. https://doi.org/10.3791/54343</Citation>
</Reference>
<Reference>
<Citation>Buyel, J. F., Twyman, R. M., & Fischer, R. (2015). Extraction and downstream processing of plant-derived recombinant proteins. Biotechnology Advances, 33(6, Pt. 1), 902-913. https://doi.org/10.1016/j.biotechadv.2015.04.010</Citation>
</Reference>
<Reference>
<Citation>Catrice, E. V., & Sainsbury, F. (2015). Assembly and purification of polyomavirus-like particles from plants. Molecular Biotechnology, 57(10), 904-913. https://doi.org/10.1007/s12033-015-9879-9</Citation>
</Reference>
<Reference>
<Citation>Cerqueira, C., Pang, Y. Y., Day, P. M., Thompson, C. D., Buck, C. B., Lowy, D. R., & Schiller, J. T. (2016). A cell-free assembly system for generating infectious human papillomavirus 16 capsids implicates a size discrimination mechanism for preferential viral genome packaging. Journal of Virology, 90(2), 1096-1107. https://doi.org/10.1128/JVI.02497-15</Citation>
</Reference>
<Reference>
<Citation>Cerqueira, C., Thompson, C. D., Day, P. M., Pang, Y. S., Lowy, D. R., & Schiller, J. T. (2017). Efficient production of papillomavirus gene delivery vectors in defined in vitro reactions. Molecular Therapy. Methods & Clinical Development, 5, 165-179. https://doi.org/10.1016/j.omtm.2017.04.005</Citation>
</Reference>
<Reference>
<Citation>Chabeda, A., van Zyl, A. R., Rybicki, E. P., & Hitzeroth, I. I. (2019). Substitution of human papillomavirus type 16 L2 neutralising epitopes into L1 surface loops: The effect on virus-like particle assembly and immunogenicity. Frontiers in Plant Science, 10, 779. https://doi.org/10.3389/fpls.2019.00779</Citation>
</Reference>
<Reference>
<Citation>Cho, C. F., Shukla, S., Simpson, E. J., Steinmetz, N. F., Luyt, L. G., & Lewis, J. D. (2014). Molecular targeted viral nanoparticles as tools for imaging cancer. Methods in Molecular Biology, 1108, 211-230. https://doi.org/10.1007/978-1-62703-751-8_16</Citation>
</Reference>
<Reference>
<Citation>Choi, N. W., Estes, M. K., & Langridge, W. H. (2005). Synthesis and assembly of a cholera toxin B subunit-rotavirus VP7 fusion protein in transgenic potato. Molecular Biotechnology, 31(3), 193-202. https://doi.org/10.1385/MB:31:3:193</Citation>
</Reference>
<Reference>
<Citation>Comellas-Aragones, M., Sikkema, F. D., Delaittre, G., Terry, A. E., King, S. M., Visser, D., … Feiters, M. C. (2011). Solution scattering studies on a virus capsid protein as a building block for nanoscale assemblies. Soft Matter, 7(24), 11380-11391. https://doi.org/10.1039/c1sm06123b</Citation>
</Reference>
<Reference>
<Citation>Copeland, K. M., Elliot, A. J., & Daniels, R. S. (2005). Functional chimeras of human immunodeficiency virus type 1 Gp120 and influenza A virus (H3) hemagglutinin. Journal of Virology, 79(10), 6459-6471. https://doi.org/10.1128/JVI.79.10.6459-6471.2005</Citation>
</Reference>
<Reference>
<Citation>Cuenca, S., Mansilla, C., Aguado, M., Yuste-Calvo, C., Sanchez, F., Sanchez-Montero, J. M., & Ponz, F. (2016). Nanonets derived from turnip mosaic virus as scaffolds for increased enzymatic activity of immobilized Candida Antarctica lipase B. Frontiers in Plant Science, 7, 464. https://doi.org/10.3389/fpls.2016.00464</Citation>
</Reference>
<Reference>
<Citation>Czyz, M., Dembczynski, R., Marecik, R., Wojas-Turek, J., Milczarek, M., Pajtasz-Piasecka, E., … Pniewski, T. (2014). Freeze-drying of plant tissue containing HBV surface antigen for the oral vaccine against hepatitis B. BioMed Research International, 2014, 1-10. https://doi.org/10.1155/2014/485689</Citation>
</Reference>
<Reference>
<Citation>D'Aoust, M. A., Landry, N., Lavoie, P. O., Arai, M., Asahara, N., Mutepfa, D. L., … Rybicki, E. P. (2013). USA Patent No. US Patent & Trademark Office. Retieved from http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=2&p=1&f=G&l=50&d=PG01&S1=((rotavirus+AND+vaccine)+AND+rybicki.IN.)&OS=rotavirus+and+vaccine+and+in/rybicki&RS=((rotavirus+AND+vaccine)+AND+IN/rybicki)</Citation>
</Reference>
<Reference>
<Citation>D'Aoust, M. A., Couture, M. M., Charland, N., Trepanier, S., Landry, N., Ors, F., & Vezina, L. P. (2010). The production of hemagglutinin-based virus-like particles in plants: A rapid, efficient and safe response to pandemic influenza. Plant Biotechnology Journal, 8(5), 607-619. https://doi.org/10.1111/j.1467-7652.2009.00496.x</Citation>
</Reference>
<Reference>
<Citation>D'Aoust, M. A., Couture, M. M., Lavoie, P. O., & Vezina, L. P. (2014). E. P. Organization. http://worldwide.espacenet.com/publicationDetails/biblio?CC=KR&NR=20140002685A&KC=A&FT=D&ND=3&date=20140108&DB=EPODOC&locale=en_EP</Citation>
</Reference>
<Reference>
<Citation>D'Aoust, M. A., Lavoie, P. O., Couture, M. M., Trepanier, S., Guay, J. M., Dargis, M., … Vezina, L. P. (2008). Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnology Journal, 6(9), 930-940. https://doi.org/10.1111/j.1467-7652.2008.00384.x</Citation>
</Reference>
<Reference>
<Citation>Day, P. M., Weisberg, A. S., Thompson, C. D., Hughes, M. M., Pang, Y. Y., Lowy, D. R., & Schiller, J. T. (2019). Human papillomavirus type 16 (HPV16) capsids mediate nuclear entry during infection. Journal of Virology, 93(15), e00454-19. https://doi.org/10.1128/JVI.00454-19</Citation>
</Reference>
<Reference>
<Citation>De Figueiredo Pinto Gomes Pera, F. (2017). Design and production of a candidate universal influenza A vaccine in Nicotiana benthamiana plants. (Master of science dissertation). University of Cape Town, Cape Town. Retrieved from https://open.uct.ac.za/handle/11427/27063</Citation>
</Reference>
<Reference>
<Citation>Dennis, S. J., O'Kennedy, M. M., Rutkowska, D., Tsekoa, T., Lourens, C. W., Hitzeroth, I. I., … Rybicki, E. P. (2018). Safety and immunogenicity of plant-produced African horse sickness virus-like particles in horses. Veterinary Research, 49(1), 105. https://doi.org/10.1186/s13567-018-0600-4</Citation>
</Reference>
<Reference>
<Citation>Diamos, A. G., & Mason, H. S. (2018). High-level expression and enrichment of norovirus virus-like particles in plants using modified geminiviral vectors. Protein Expression and Purification, 151, 86-92. https://doi.org/10.1016/j.pep.2018.06.011</Citation>
</Reference>
<Reference>
<Citation>Dong, J. L., Liang, B. G., Jin, Y. S., Zhang, W. J., & Wang, T. (2005). Oral immunization with pBsVP6-transgenic alfalfa protects mice against rotavirus infection. Virology, 339(2), 153-163. https://doi.org/10.1016/j.virol.2005.06.004</Citation>
</Reference>
<Reference>
<Citation>Dus Santos, M. J., Carrillo, C., Ardila, F., Rios, R. D., Franzone, P., Piccone, M. E., … Borca, M. V. (2005). Development of transgenic alfalfa plants containing the foot and mouth disease virus structural polyprotein gene P1 and its utilization as an experimental immunogen. Vaccine, 23(15), 1838-1843. https://doi.org/10.1016/j.vaccine.2004.11.014</Citation>
</Reference>
<Reference>
<Citation>Duvenage, L., Hitzeroth, I. I., Meyers, A. E., & Rybicki, E. P. (2013). Expression in tobacco and purification of beak and feather disease virus capsid protein fused to elastin-like polypeptides. Journal of Virological Methods, 191(1), 55-62. https://doi.org/10.1016/j.jviromet.2013.03.028</Citation>
</Reference>
<Reference>
<Citation>Eiben, S., Koch, C., Altintoprak, K., Southan, A., Tovar, G., Laschat, S., … Wege, C. (2018). Plant virus-based materials for biomedical applications: Trends and prospects. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2018.08.011</Citation>
</Reference>
<Reference>
<Citation>Fox, J. M., Wang, G. J., Speir, J. A., Olson, N. H., Johnson, J. E., Baker, T. S., & Young, M. J. (1998). Comparison of the native CCMV virion with in vitro assembled CCMW virions by cryoelectron microscopy and image reconstruction. Virology, 244(1), 212-218. https://doi.org/10.1006/viro.1998.9107</Citation>
</Reference>
<Reference>
<Citation>Fraiberk, M., Hajkova, M., Krulova, M., Kojzarova, M., Drda Moravkova, A., Psikal, I., & Forstova, J. (2017). Exploitation of stable nanostructures based on the mouse polyomavirus for development of a recombinant vaccine against porcine circovirus 2. PLoS One, 12(9), e0184870. https://doi.org/10.1371/journal.pone.0184870</Citation>
</Reference>
<Reference>
<Citation>Gallie, D. R., Sleat, D. E., & Watts, J. W. (1987). In vivo uncoating and efficient expression of foreign mRNAs packaged in TMV-like particles. Science, 236(4805), 1122-1124.</Citation>
</Reference>
<Reference>
<Citation>Ganguly, R., Wen, A. M., Myer, A. B., Czech, T., Sahu, S., Steinmetz, N. F., & Raman, P. (2016). Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro. Nanoscale, 8(12), 6542-6554. https://doi.org/10.1039/c6nr00398b</Citation>
</Reference>
<Reference>
<Citation>Gellert, A., Salanki, K., Tombacz, K., Tuboly, T., & Balazs, E. (2012). A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines. PLoS One, 7(12), e52688. https://doi.org/10.1371/journal.pone.0052688</Citation>
</Reference>
<Reference>
<Citation>Gonzalez, D. D., Mozgovoj, M. V., Bellido, D., Rodriguez, D. V., Fernandez, F. M., Wigdorovitz, A., … Dus Santos, M. J. (2010). Evaluation of a bovine rotavirus VP6 vaccine efficacy in the calf model of infection and disease. Veterinary Immunology and Immunopathology, 137(1-2), 155-160. https://doi.org/10.1016/j.vetimm.2010.04.015</Citation>
</Reference>
<Reference>
<Citation>Gonzalez-Gamboa, I., Manrique, P., Sanchez, F., & Ponz, F. (2017). Plant-made potyvirus-like particles used for log-increasing antibody sensing capacity. Journal of Biotechnology, 254, 17-24. https://doi.org/10.1016/j.jbiotec.2017.06.014</Citation>
</Reference>
<Reference>
<Citation>Gordon, S. N., Kines, R. C., Kutsyna, G., Ma, Z. M., Hryniewicz, A., Roberts, J. N., … Franchini, G. (2012). Targeting the vaginal mucosa with human papillomavirus pseudovirion vaccines delivering simian immunodeficiency virus DNA. Journal of Immunology, 188(2), 714-723. https://doi.org/10.4049/jimmunol.1101404</Citation>
</Reference>
<Reference>
<Citation>Graham, B. S., Kines, R. C., Corbett, K. S., Nicewonger, J., Johnson, T. R., Chen, M., … Buck, C. B. (2010). Mucosal delivery of human papillomavirus pseudovirus-encapsidated plasmids improves the potency of DNA vaccination. Mucosal Immunology, 3(5), 475-486. https://doi.org/10.1038/mi.2010.31</Citation>
</Reference>
<Reference>
<Citation>Greco, R., Michel, M., Guetard, D., Cervantes-Gonzalez, M., Pelucchi, N., Wain-Hobson, S., … Sala, M. (2007). Production of recombinant HIV-1/HBV virus-like particles in Nicotiana tabacum and Arabidopsis thaliana plants for a bivalent plant-based vaccine. Vaccine, 25(49), 8228-8240. https://doi.org/10.1016/j.vaccine.2007.09.061</Citation>
</Reference>
<Reference>
<Citation>Gunter, C. J., Regnard, G. L., Rybicki, E. P., & Hitzeroth, I. I. (2019). Immunogenicity of plant-produced porcine circovirus-like particles in mice. Plant Biotechnology Journal, 17, 1751-1759. https://doi.org/10.1111/pbi.13097</Citation>
</Reference>
<Reference>
<Citation>Guo, L., Lu, X., Kang, S. M., Chen, C., Compans, R. W., & Yao, Q. (2003). Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles. Virology, 313(2), 502-513.</Citation>
</Reference>
<Reference>
<Citation>Hitzeroth, I. I., Chabeda, A., Whitehead, M. P., Graf, M., & Rybicki, E. P. (2018). Optimizing a human papillomavirus type 16 L1-based Chimaeric gene for expression in plants. Frontiers in Bioengineering and Biotechnology, 6, 101. https://doi.org/10.3389/fbioe.2018.00101</Citation>
</Reference>
<Reference>
<Citation>Hojeij, R., Domingos-Pereira, S., Nkosi, M., Gharbi, D., Derre, L., Schiller, J. T., … Nardelli-Haefliger, D. (2016). Immunogenic human papillomavirus pseudovirus-mediated suicide-gene therapy for bladder cancer. International Journal of Molecular Sciences, 17(7), 1125. https://doi.org/10.3390/ijms17071125</Citation>
</Reference>
<Reference>
<Citation>Hovlid, M. L., Steinmetz, N. F., Laufer, B., Lau, J. L., Kuzelka, J., Wang, Q., … Finn, M. G. (2012). Guiding plant virus particles to integrin-displaying cells. Nanoscale, 4(12), 3698-3705. https://doi.org/10.1039/c2nr30571b</Citation>
</Reference>
<Reference>
<Citation>Hu, H., Masarapu, H., Gu, Y., Zhang, Y., Yu, X., & Steinmetz, N. F. (2019). Physalis mottle virus-like nanoparticles for targeted cancer imaging. ACS Applied Materials & Interfaces, 11, 18213-18223. https://doi.org/10.1021/acsami.9b03956</Citation>
</Reference>
<Reference>
<Citation>Huang, Y., Liang, W., Wang, Y., Zhou, Z., Pan, A., Yang, X., … Zhang, D. (2005). Immunogenicity of the epitope of the foot-and-mouth disease virus fused with a hepatitis B core protein as expressed in transgenic tobacco. Viral Immunology, 18(4), 668-677.</Citation>
</Reference>
<Reference>
<Citation>Huang, Z., Santi, L., LePore, K., Kilbourne, J., Arntzen, C. J., & Mason, H. S. (2006). Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine, 24(14), 2506-2513. https://doi.org/10.1016/j.vaccine.2005.12.024</Citation>
</Reference>
<Reference>
<Citation>Huber, B., Schellenbacher, C., Shafti-Keramat, S., Jindra, C., Christensen, N., & Kirnbauer, R. (2017). Chimeric L2-based virus-like particle (VLP) vaccines targeting cutaneous human papillomaviruses (HPV). PLoS One, 12(1), e0169533. https://doi.org/10.1371/journal.pone.0169533</Citation>
</Reference>
<Reference>
<Citation>International Committee on Taxonomy of Viruses. (2019). Subfamily: Comovirinae. Retrieved from https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/picornavirales/w/secoviridae/582/subfamily-comovirinae</Citation>
</Reference>
<Reference>
<Citation>Jutras, P. V., D'Aoust, M. A., Couture, M. M., Vezina, L. P., Goulet, M. C., Michaud, D., & Sainsbury, F. (2015). Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants. Biotechnology Journal, 10(9), 1478-1486. https://doi.org/10.1002/biot.201500056</Citation>
</Reference>
<Reference>
<Citation>Jutras, P. V., Goulet, M. C., Lavoie, P. O., D'Aoust, M. A., Sainsbury, F., & Michaud, D. (2018). Recombinant protein susceptibility to proteolysis in the plant cell secretory pathway is pH-dependent. Plant Biotechnology Journal, 16(11), 1928-1938. https://doi.org/10.1111/pbi.12928</Citation>
</Reference>
<Reference>
<Citation>Kaper, J. M. (1960). Preparation and characterization of artificial top component from turnip yellow mosaic virus. Journal of Molecular Biology, 2, 425-433.</Citation>
</Reference>
<Reference>
<Citation>Kaper, J. M. (1964). Alkaline degradation of turnip yellow mosaic virus. I. The controlled formation of empty protein shells. Biochemistry, 3, 486-493.</Citation>
</Reference>
<Reference>
<Citation>Kaur, G., Valarmathi, M. T., Potts, J. D., & Wang, Q. (2008). The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus. Biomaterials, 29(30), 4074-4081. https://doi.org/10.1016/j.biomaterials.2008.06.029</Citation>
</Reference>
<Reference>
<Citation>Kemnade, J. O., Seethammagari, M., Collinson-Pautz, M., Kaur, H., Spencer, D. M., & McCormick, A. A. (2014). Tobacco mosaic virus efficiently targets DC uptake, activation and antigen-specific T cell responses in vivo. Vaccine, 32(33), 4228-4233. https://doi.org/10.1016/j.vaccine.2014.04.051</Citation>
</Reference>
<Reference>
<Citation>Kernan, D. L., Wen, A. M., Pitek, A. S., & Steinmetz, N. F. (2017). Featured article: Delivery of chemotherapeutic vcMMAE using tobacco mosaic virus nanoparticles. Experimental Biology and Medicine (Maywood, N.J.), 242(14), 1405-1411. https://doi.org/10.1177/1535370217719222</Citation>
</Reference>
<Reference>
<Citation>Kesik-Brodacka, M., Lipiec, A., Kozak Ljunggren, M., Jedlina, L., Miedzinska, K., Mikolajczak, M., … Wedrychowicz, H. (2017). Immune response of rats vaccinated orally with various plant-expressed recombinant cysteine proteinase constructs when challenged with Fasciola hepatica metacercariae. PLoS Neglected Tropical Diseases, 11(3), e0005451. https://doi.org/10.1371/journal.pntd.0005451</Citation>
</Reference>
<Reference>
<Citation>Kessans, S. A., Linhart, M. D., Meador, L. R., Kilbourne, J., Hogue, B. G., Fromme, P., … Mor, T. S. (2016). Immunological characterization of plant-based HIV-1 Gag/Dgp41 virus-like particles. PLoS One, 11(3), e0151842. https://doi.org/10.1371/journal.pone.0151842</Citation>
</Reference>
<Reference>
<Citation>Kim, Y., Kim, J., Kang, K., & Lyoo, Y. S. (2002). Characterization of the recombinant proteins of porcine circovirus type 2 field isolate expressed in the baculovirus system. Journal of Veterinary Science, 3(1), 19-23.</Citation>
</Reference>
<Reference>
<Citation>Kines, R. C., Cerio, R. J., Roberts, J. N., Thompson, C. D., de Los Pinos, E., Lowy, D. R., & Schiller, J. T. (2016). Human papillomavirus capsids preferentially bind and infect tumor cells. International Journal of Cancer, 138(4), 901-911. https://doi.org/10.1002/ijc.29823</Citation>
</Reference>
<Reference>
<Citation>Kines, R. C., Zarnitsyn, V., Johnson, T. R., Pang, Y. Y., Corbett, K. S., Nicewonger, J. D., … Graham, B. S. (2015). Vaccination with human papillomavirus pseudovirus-encapsidated plasmids targeted to skin using microneedles. PLoS One, 10(3), e0120797. https://doi.org/10.1371/journal.pone.0120797</Citation>
</Reference>
<Reference>
<Citation>Lamprecht, R. L., Kennedy, P., Huddy, S. M., Bethke, S., Hendrikse, M., Hitzeroth, I. I., & Rybicki, E. P. (2016). Production of human papillomavirus pseudovirions in plants and their use in pseudovirion-based neutralisation assays in mammalian cells. Scientific Reports, 6, 20431. https://doi.org/10.1038/srep20431</Citation>
</Reference>
<Reference>
<Citation>Lavelle, L., Michel, J. P., & Gingery, M. (2007). The disassembly, reassembly and stability of CCMV protein capsids. Journal of Virological Methods, 146(1-2), 311-316. https://doi.org/10.1016/j.jviromet.2007.07.020</Citation>
</Reference>
<Reference>
<Citation>Lee, K. L., Carpenter, B. L., Wen, A. M., Ghiladi, R. A., & Steinmetz, N. F. (2016). High aspect ratio nanotubes formed by tobacco mosaic virus for delivery of photodynamic agents targeting melanoma. ACS Biomaterials Science & Engineering, 2(5), 838-844. https://doi.org/10.1021/acsbiomaterials.6b00061</Citation>
</Reference>
<Reference>
<Citation>Lee, R. W., Strommer, J., Hodgins, D., Shewen, P. E., Niu, Y., & Lo, R. Y. (2001). Towards development of an edible vaccine against bovine pneumonic pasteurellosis using transgenic white clover expressing a Mannheimia haemolytica A1 leukotoxin 50 fusion protein. Infection and Immunity, 69(9), 5786-5793.</Citation>
</Reference>
<Reference>
<Citation>Li, J. T., Fei, L., Mou, Z. R., Wei, J., Tang, Y., He, H. Y., … Wu, Y. Z. (2006). Immunogenicity of a plant-derived edible rotavirus subunit vaccine transformed over fifty generations. Virology, 356(1-2), 171-178. https://doi.org/10.1016/j.virol.2006.07.045</Citation>
</Reference>
<Reference>
<Citation>Li, X., Meng, X., Wang, S., Li, Z., Yang, L., Tu, L., … Wang, L. (2018). Virus-like particles of recombinant PCV2b carrying FMDV-VP1 epitopes induce both anti-PCV and anti-FMDV antibody responses. Applied Microbiology and Biotechnology, 102(24), 10541-10550. https://doi.org/10.1007/s00253-018-9361-2</Citation>
</Reference>
<Reference>
<Citation>Li, Y., Guan, L., Liu, X., Liu, W., Yang, J., Zhang, X., … Li, X. (2018). Oral immunization with rotavirus VP7-CTB fusion expressed in transgenic Arabidopsis thaliana induces antigen-specific IgA and IgG and passive protection in mice. Experimental and Therapeutic Medicine, 15(6), 4866-4874. https://doi.org/10.3892/etm.2018.6003</Citation>
</Reference>
<Reference>
<Citation>Lieknina, I., Kalnins, G., Akopjana, I., Bogans, J., Sisovs, M., Jansons, J., … Tars, K. (2019). Production and characterization of novel ssRNA bacteriophage virus-like particles from metagenomic sequencing data. Journal of Nanobiotechnology, 17(1), 61. https://doi.org/10.1186/s12951-019-0497-8</Citation>
</Reference>
<Reference>
<Citation>Lindsay, B. J., Bonar, M. M., Costas-Cancelas, I. N., Hunt, K., Makarkov, A. I., Chierzi, S., … Rouiller, I. (2018). Morphological characterization of a plant-made virus-like particle vaccine bearing influenza virus hemagglutinins by electron microscopy. Vaccine, 36(16), 2147-2154. https://doi.org/10.1016/j.vaccine.2018.02.106</Citation>
</Reference>
<Reference>
<Citation>Lizotte, P. H., Wen, A. M., Sheen, M. R., Fields, J., Rojanasopondist, P., Steinmetz, N. F., & Fiering, S. (2016). In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nature Nanotechnology, 11(3), 295-303. https://doi.org/10.1038/nnano.2015.292</Citation>
</Reference>
<Reference>
<Citation>Love, A. J., Chapman, S. N., Matic, S., Noris, E., Lomonossoff, G. P., & Taliansky, M. (2012). In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta, 236, 1305-1313. https://doi.org/10.1007/s00425-012-1692-0</Citation>
</Reference>
<Reference>
<Citation>Loza-Rubio, E., Rojas, E., Gomez, L., Olivera, M. T., & Gomez-Lim, M. A. (2008). Development of an edible rabies vaccine in maize using the Vnukovo strain. Developmental Biology (Basel), 131, 477-482.</Citation>
</Reference>
<Reference>
<Citation>Lyttleton, J. W., & Matthews, R. E. (1958). Release of nucleic acid from turnip yellow mosaic virus under mild conditions. Virology, 6(2), 460-471.</Citation>
</Reference>
<Reference>
<Citation>Maclean, J., Koekemoer, M., Olivier, A. J., Stewart, D., Hitzeroth, I. I., Rademacher, T., … Rybicki, E. P. (2007). Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: Comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. Journal of General Virology, 88(Pt. 5), 1460-1469. https://doi.org/10.1099/vir.0.82718-0</Citation>
</Reference>
<Reference>
<Citation>Makarkov, A. I., Chierzi, S., Pillet, S., Murai, K. K., Landry, N., & Ward, B. J. (2017). Plant-made virus-like particles bearing influenza hemagglutinin (HA) recapitulate early interactions of native influenza virions with human monocytes/macrophages. Vaccine, 35(35, Pt. B), 4629-4636. https://doi.org/10.1016/j.vaccine.2017.07.012</Citation>
</Reference>
<Reference>
<Citation>Malm, M., Diessner, A., Tamminen, K., Liebscher, M., Vesikari, T., & Blazevic, V. (2019). Rotavirus VP6 as an adjuvant for bivalent norovirus vaccine produced in Nicotiana benthamiana. Pharmaceutics, 11(5), 229. https://doi.org/10.3390/pharmaceutics11050229</Citation>
</Reference>
<Reference>
<Citation>Mamedov, T., & Yusibov, V. (2013). In vivo deglycosylation of recombinant proteins in plants by co-expression with bacterial PNGase F. Bioengineered, 4(5), 338-342. https://doi.org/10.4161/bioe.23449</Citation>
</Reference>
<Reference>
<Citation>Markham, R., & Smith, K. M. (1949). Studies on the virus of turnip yellow mosaic. Parasitology, 39(3-4), 330-342.</Citation>
</Reference>
<Reference>
<Citation>Marsian, J., Fox, H., Bahar, M. W., Kotecha, A., Fry, E. E., Stuart, D. I., … Lomonossoff, G. P. (2017). Plant-made polio type 3 stabilized VLPs-A candidate synthetic polio vaccine. Nature Communications, 8(1), 245. https://doi.org/10.1038/s41467-017-00090-w</Citation>
</Reference>
<Reference>
<Citation>Martelli, P., Ferrari, L., Morganti, M., De Angelis, E., Bonilauri, P., Guazzetti, S., … Borghetti, P. (2011). One dose of a porcine circovirus 2 subunit vaccine induces humoral and cell-mediated immunity and protects against porcine circovirus-associated disease under field conditions. Veterinary Microbiology, 149(3-4), 339-351. https://doi.org/10.1016/j.vetmic.2010.12.008</Citation>
</Reference>
<Reference>
<Citation>Marth, K., Breyer, I., Focke-Tejkl, M., Blatt, K., Shamji, M. H., Layhadi, J., … Valenta, R. (2013). A nonallergenic birch pollen allergy vaccine consisting of hepatitis PreS-fused Bet v 1 peptides focuses blocking IgG toward IgE epitopes and shifts immune responses to a tolerogenic and Th1 phenotype. Journal of Immunology, 190(7), 3068-3078. https://doi.org/10.4049/jimmunol.1202441</Citation>
</Reference>
<Reference>
<Citation>Masarapu, H., Patel, B. K., Chariou, P. L., Hu, H., Gulati, N. M., Carpenter, B. L., … Steinmetz, N. F. (2017). Physalis mottle virus-like particles as nanocarriers for imaging reagents and drugs. Biomacromolecules, 18(12), 4141-4153. https://doi.org/10.1021/acs.biomac.7b01196</Citation>
</Reference>
<Reference>
<Citation>Mason, H. S., Lam, D. M., & Arntzen, C. J. (1992). Expression of hepatitis B surface antigen in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America, 89(24), 11745-11749.</Citation>
</Reference>
<Reference>
<Citation>Mbewana, S., Meyers, A. E., & Rybicki, E. P. (2019). Chimaeric Rift Valley fever virus-like particle vaccine candidate production in Nicotiana benthamiana. Biotechnology Journal, 14(4), e1800238. https://doi.org/10.1002/biot.201800238</Citation>
</Reference>
<Reference>
<Citation>McCormick, A. A., Corbo, T. A., Wykoff-Clary, S., Nguyen, L. V., Smith, M. L., Palmer, K. E., & Pogue, G. P. (2006). TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models. Vaccine, 24(40-41), 6414-6423. https://doi.org/10.1016/j.vaccine.2006.06.003</Citation>
</Reference>
<Reference>
<Citation>McCormick, A. A., Corbo, T. A., Wykoff-Clary, S., Palmer, K. E., & Pogue, G. P. (2006). Chemical conjugate TMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection. Bioconjugate Chemistry, 17(5), 1330-1338. https://doi.org/10.1021/bc060124m</Citation>
</Reference>
<Reference>
<Citation>McCormick, A. A., & Palmer, K. E. (2008). Genetically engineered tobacco mosaic virus as nanoparticle vaccines. Expert Review of Vaccines, 7(1), 33-41. https://doi.org/10.1586/14760584.7.1.33</Citation>
</Reference>
<Reference>
<Citation>Mechtcheriakova, I. A., Eldarov, M. A., Nicholson, L., Shanks, M., Skryabin, K. G., & Lomonossoff, G. P. (2006). The use of viral vectors to produce hepatitis B virus core particles in plants. Journal of Virological Methods, 131(1), 10-15. https://doi.org/10.1016/j.jviromet.2005.06.020</Citation>
</Reference>
<Reference>
<Citation>Metavarayuth, K., Nguyen, H. G., & Wang, Q. (2018). Fabrication of plant virus-based thin films to modulate the osteogenic differentiation of mesenchymal stem cells. Methods in Molecular Biology, 1776, 609-627. https://doi.org/10.1007/978-1-4939-7808-3_39</Citation>
</Reference>
<Reference>
<Citation>Mo, X., Li, X., Yin, B., Deng, J., Tian, K., & Yuan, A. (2019). Structural roles of PCV2 capsid protein N-terminus in PCV2 particle assembly and identification of PCV2 type-specific neutralizing epitope. PLoS Pathogens, 15(3), e1007562. https://doi.org/10.1371/journal.ppat.1007562</Citation>
</Reference>
<Reference>
<Citation>Montero-Morales, L., & Steinkellner, H. (2018). Advanced plant-based glycan engineering. Frontiers in Bioengineering and Biotechnology, 6, 81. https://doi.org/10.3389/fbioe.2018.00081</Citation>
</Reference>
<Reference>
<Citation>Murray, A. A., Wang, C., Fiering, S., & Steinmetz, N. F. (2018). In situ vaccination with cowpea vs tobacco mosaic virus against melanoma. Molecular Pharmaceutics, 15(9), 3700-3716. https://doi.org/10.1021/acs.molpharmaceut.8b00316</Citation>
</Reference>
<Reference>
<Citation>Narayanan, K. B., & Han, S. S. (2017). Helical plant viral nanoparticles-bioinspired synthesis of nanomaterials and nanostructures. Bioinspiration & Biomimetics, 12(3), 031001. https://doi.org/10.1088/1748-3190/aa6bfd</Citation>
</Reference>
<Reference>
<Citation>Narayanan, K. B., & Han, S. S. (2018). Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy. Virus Genes, 54(5), 623-637. https://doi.org/10.1007/s11262-018-1583-y</Citation>
</Reference>
<Reference>
<Citation>Ochoa, W. F., Chatterji, A., Lin, T. W., & Johnson, J. E. (2006). Generation and structural analysis of reactive empty particles derived from an icosahedral virus. Chemistry & Biology, 13(7), 771-778. https://doi.org/10.1016/j.chembiol.2006.05.014</Citation>
</Reference>
<Reference>
<Citation>Pan, L., Zhang, Y., Wang, Y., Wang, B., Wang, W., Fang, Y., … Xie, Q. (2008). Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in Guinea pigs. Veterinary Immunology and Immunopathology, 121(1-2), 83-90. https://doi.org/10.1016/j.vetimm.2007.08.010</Citation>
</Reference>
<Reference>
<Citation>Pastrana, D. V., Buck, C. B., Pang, Y. Y., Thompson, C. D., Castle, P. E., FitzGerald, P. C., … Schiller, J. T. (2004). Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology, 321(2), 205-216. https://doi.org/10.1016/j.virol.2003.12.027</Citation>
</Reference>
<Reference>
<Citation>Pera, F. F., Mutepfa, D. L., Khan, A. M., Els, J. H., Mbewana, S., van Dijk, A. A., … Hitzeroth, I. I. (2015). Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana. Virology Journal, 12, 205. https://doi.org/10.1186/s12985-015-0436-8</Citation>
</Reference>
<Reference>
<Citation>Peyret, H., Gehin, A., Thuenemann, E. C., Blond, D., El Turabi, A., Beales, L., … Rowlands, D. J. (2015). Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS One, 10(4), e0120751. https://doi.org/10.1371/journal.pone.0120751</Citation>
</Reference>
<Reference>
<Citation>Pillet, S., Aubin, E., Trepanier, S., Bussiere, D., Dargis, M., Poulin, J. F., … Landry, N. (2016). A plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults. Clinical Immunology, 168, 72-87. https://doi.org/10.1016/j.clim.2016.03.008</Citation>
</Reference>
<Reference>
<Citation>Pillet, S., Racine, T., Nfon, C., Di Lenardo, T. Z., Babiuk, S., Ward, B. J., … Landry, N. (2015). Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine, 33(46), 6282-6289. https://doi.org/10.1016/j.vaccine.2015.09.065</Citation>
</Reference>
<Reference>
<Citation>Pineo, C. B., Hitzeroth, I. I., & Rybicki, E. P. (2013). Immunogenic assessment of plant-produced human papillomavirus type 16 L1/L2 chimaeras. Plant Biotechnology Journal, 11(8), 964-975. https://doi.org/10.1111/pbi.12089</Citation>
</Reference>
<Reference>
<Citation>Pitek, A. S., Hu, H., Shukla, S., & Steinmetz, N. F. (2018). Cancer theranostic applications of albumin-coated tobacco mosaic virus nanoparticles. ACS Applied Materials & Interfaces, 10(46), 39468-39477. https://doi.org/10.1021/acsami.8b12499</Citation>
</Reference>
<Reference>
<Citation>Pumpens, P., Borisova, G. P., Crowther, R. A., & Grens, E. (1995). Hepatitis B virus core particles as epitope carriers. Intervirology, 38(1-2), 63-74. https://doi.org/10.1159/000150415</Citation>
</Reference>
<Reference>
<Citation>Pumpens, P., & Grens, E. (1999). Hepatitis B core particles as a universal display model: A structure-function basis for development. FEBS Letters, 442(1), 1-6.</Citation>
</Reference>
<Reference>
<Citation>Quacquarelli, A., Vovlas, C., & Piazzolla, P. (1972). Freezing in production of artificial top component of chicory yellow mottle virus. Journal of General Virology, 17, 147. https://doi.org/10.1099/0022-1317-17-2-147</Citation>
</Reference>
<Reference>
<Citation>Rademacher, T., Sack, M., Blessing, D., Fischer, R., Holland, T., & Buyel, J. (2019). Plant cell packs: A scalable platform for recombinant protein production and metabolic engineering. Plant Biotechnology Journal, 17, 1560-1566. https://doi.org/10.1111/pbi.13081</Citation>
</Reference>
<Reference>
<Citation>Ravin, N. V., Kotlyarov, R. Y., Mardanova, E. S., Kuprianov, V. V., Migunov, A. I., Stepanova, L. A., … Skryabin, K. G. (2012). Plant-produced recombinant influenza vaccine based on virus-like HBc particles carrying an extracellular domain of M2 protein. Biochemistry (Mosc), 77(1), 33-40. https://doi.org/10.1134/S000629791201004X</Citation>
</Reference>
<Reference>
<Citation>Regnard, G. L., de Moor, W. R. J., Hitzeroth, I. I., Williamson, A. L., & Rybicki, E. P. (2017). Xenogenic rolling-circle replication of a synthetic beak and feather disease virus genomic clone in 293TT mammalian cells and Nicotiana benthamiana. Journal of General Virology, 98(9), 2329-2338. https://doi.org/10.1099/jgv.0.000915</Citation>
</Reference>
<Reference>
<Citation>Regnard, G. L., Halley-Stott, R. P., Tanzer, F. L., Hitzeroth, I. I., & Rybicki, E. P. (2010). High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnology Journal, 8(1), 38-46. https://doi.org/10.1111/j.1467-7652.2009.00462.x</Citation>
</Reference>
<Reference>
<Citation>Regnard, G. L., Rybicki, E. P., & Hitzeroth, I. I. (2017). Recombinant expression of beak and feather disease virus capsid protein and assembly of virus-like particles in Nicotiana benthamiana. Virology Journal, 14(1), 174. https://doi.org/10.1186/s12985-017-0847-9</Citation>
</Reference>
<Reference>
<Citation>Ritchie, B. W., Niagro, F. D., Lukert, P. D., Latimer, K. S., Steffens, W. L., III, & Pritchard, N. (1989). A review of psittacine beak and feather disease: Characteristics of the PBFD virus. Journal of the Association of Avian Veterinarians, 3, 143-149.</Citation>
</Reference>
<Reference>
<Citation>Roy, P., Bishop, D. H., LeBlois, H., & Erasmus, B. J. (1994). Long-lasting protection of sheep against bluetongue challenge after vaccination with virus-like particles: Evidence for homologous and partial heterologous protection. Vaccine, 12(9), 805-811.</Citation>
</Reference>
<Reference>
<Citation>Ruiz, V., Baztarrica, J., Rybicki, E. P., Meyers, A. E., & Wigdorovitz, A. (2018). Minimally processed crude leaf extracts of Nicotiana benthamiana containing recombinant foot and mouth disease virus-like particles are immunogenic in mice. Biotechnology Reports (Amsterdam, Netherlands), 20, e00283. https://doi.org/10.1016/j.btre.2018.e00283</Citation>
</Reference>
<Reference>
<Citation>Rybicki, E. (2015). From plant virology to vaccinology: The road less travelled. Human Vaccines & Immunotherapeutics, 11(11), 2517-2521. https://doi.org/10.1080/21645515.2015.1092751</Citation>
</Reference>
<Reference>
<Citation>Rybicki, E. P. (2009). Plant-produced vaccines: Promise and reality. Drug Discovery Today, 14(1-2), 16-24. https://doi.org/10.1016/j.drudis.2008.10.002</Citation>
</Reference>
<Reference>
<Citation>Rybicki, E. P. (2010). Plant-made vaccines for humans and animals. Plant Biotechnology Journal, 8(5), 620-637. https://doi.org/10.1111/j.1467-7652.2010.00507.x</Citation>
</Reference>
<Reference>
<Citation>Rybicki, E. P. (2014). Plant-based vaccines against viruses. Virology Journal, 11, 205. https://doi.org/10.1186/s12985-014-0205-0</Citation>
</Reference>
<Reference>
<Citation>Rybicki, E. P., & Coyne, V. E. (1983). Serological differentiation of brome mosaic-virus morphomers. FEMS Microbiology Letters, 20(1), 103-106.</Citation>
</Reference>
<Reference>
<Citation>Rybicki, E. P., & Martin, D. P. (2014). Virus-derived ssDNA vectors for the expression of foreign proteins in plants. Current Topics in Microbiology and Immunology, 375, 19-45. https://doi.org/10.1007/82_2011_185</Citation>
</Reference>
<Reference>
<Citation>Sainsbury, F., Canizares, M. C., & Lomonossoff, G. P. (2010). Cowpea mosaic virus: The plant virus-based biotechnology workhorse. Annual Review of Phytopathology, 48, 437-455. https://doi.org/10.1146/annurev-phyto-073009-114242</Citation>
</Reference>
<Reference>
<Citation>Saldana, S., Esquivel Guadarrama, F., Olivera Flores Tde, J., Arias, N., Lopez, S., Arias, C., … Gomez Lim, M. A. (2006). Production of rotavirus-like particles in tomato (Lycopersicon esculentum L.) fruit by expression of capsid proteins VP2 and VP6 and immunological studies. Viral Immunology, 19(1), 42-53. https://doi.org/10.1089/vim.2006.19.42</Citation>
</Reference>
<Reference>
<Citation>Sarker, S., Ghorashi, S. A., Swarbrick, C. M., Khandokar, Y. B., Himiari, Z., Forwood, J. K., & Raidal, S. R. (2015). An efficient approach for recombinant expression and purification of the viral capsid protein from beak and feather disease virus (BFDV) in Escherichia coli. Journal of Virological Methods, 215-216, 1-8. https://doi.org/10.1016/j.jviromet.2015.02.005</Citation>
</Reference>
<Reference>
<Citation>Schoonen, L., Maas, R. J. M., Nolte, R. J. M., & van Hest, J. C. M. (2017). Expansion of the assembly of cowpea chlorotic mottle virus towards non-native and physiological conditions. Tetrahedron, 73(33), 4968-4971. https://doi.org/10.1016/j.tet.2017.04.038</Citation>
</Reference>
<Reference>
<Citation>Schramm, G., & Zillig. (1955). Über die Struktur des Tabakmosaikvirus. IV. Die Reaggregation des nucleinsäure-freien Proteins. Zeitschrift für Naturforschung, 10b, 9.</Citation>
</Reference>
<Reference>
<Citation>Scotti, N., & Rybicki, E. P. (2013). Virus-like particles produced in plants as potential vaccines. Expert Review of Vaccines, 12(2), 211-224. https://doi.org/10.1586/erv.12.147</Citation>
</Reference>
<Reference>
<Citation>Shanks, M., & Lomonossoff, G. P. (2000). Go-expression of the capsid proteins of cowpea mosaic virus in insect cells leads to the formation of virus-like particles. Journal of General Virology, 81, 3093-3097. https://doi.org/10.1099/0022-1317-81-12-3093</Citation>
</Reference>
<Reference>
<Citation>Shukla, S., Ablack, A. L., Wen, A. M., Lee, K. L., Lewis, J. D., & Steinmetz, N. F. (2013). Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle potato virus X. Molecular Pharmaceutics, 10(1), 33-42. https://doi.org/10.1021/mp300240m</Citation>
</Reference>
<Reference>
<Citation>Shukla, S., Eber, F. J., Nagarajan, A. S., DiFranco, N. A., Schmidt, N., Wen, A. M., … Steinmetz, N. F. (2015). The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods. Advanced Healthcare Materials, 4(6), 874-882. https://doi.org/10.1002/adhm.201400641</Citation>
</Reference>
<Reference>
<Citation>Shulman, L. M., & Davidson, I. (2017). Viruses with circular single-stranded DNA genomes are everywhere! Annual Review of Virology, 4(1), 159-180. https://doi.org/10.1146/annurev-virology-101416-041953</Citation>
</Reference>
<Reference>
<Citation>Siegel, A. (1971). Pseudovirions of tobacco mosaic virus. Virology, 46(1), 50. https://doi.org/10.1016/0042-6822(71)90005-5</Citation>
</Reference>
<Reference>
<Citation>Sleat, D. E., Gallie, D. R., Watts, J. W., Deom, C. M., Turner, P. C., Beachy, R. N., & Wilson, T. M. (1988). Selective recovery of foreign gene transcripts as virus-like particles in TMV-infected transgenic tobaccos. Nucleic Acids Research, 16(8), 3127-3140. https://doi.org/10.1093/nar/16.8.3127</Citation>
</Reference>
<Reference>
<Citation>Sleat, D. E., Turner, P. C., Finch, J. T., Butler, P. J., & Wilson, T. M. (1986). Packaging of recombinant RNA molecules into pseudovirus particles directed by the origin-of-assembly sequence from tobacco mosaic virus RNA. Virology, 155(2), 299-308.</Citation>
</Reference>
<Reference>
<Citation>Smith, M. L., Corbo, T., Bernales, J., Lindbo, J. A., Pogue, G. P., Palmer, K. E., & McCormick, A. A. (2007). Assembly of trans-encapsidated recombinant viral vectors engineered from tobacco mosaic virus and Semliki Forest virus and their evaluation as immunogens. Virology, 358(2), 321-333. https://doi.org/10.1016/j.virol.2006.08.040</Citation>
</Reference>
<Reference>
<Citation>Smith, M. L., Lindbo, J. A., Dillard-Telm, S., Brosio, P. M., Lasnik, A. B., McCormick, A. A., … Palmer, K. E. (2006). Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology, 348(2), 475-488. https://doi.org/10.1016/j.virol.2005.12.039</Citation>
</Reference>
<Reference>
<Citation>Steinmetz, N. F., Maurer, J., Sheng, H., Bensussan, A., Maricic, I., Kumar, V., & Braciak, T. A. (2011). Two domains of vimentin are expressed on the surface of lymph node, bone and brain metastatic prostate cancer lines along with the putative stem cell marker proteins CD44 and CD133. Cancers (Basel), 3(3), 2870-2885. https://doi.org/10.3390/cancers3032870</Citation>
</Reference>
<Reference>
<Citation>Stephen, S. L., Beales, L., Peyret, H., Roe, A., Stonehouse, N. J., & Rowlands, D. J. (2018). Recombinant expression of tandem-HBc virus-like particles (VLPs). Methods in Molecular Biology, 1776, 97-123. https://doi.org/10.1007/978-1-4939-7808-3_7</Citation>
</Reference>
<Reference>
<Citation>Stewart, M. E., Bonne, N., Shearer, P., Khalesi, B., Sharp, M., & Raidal, S. (2007). Baculovirus expression of beak and feather disease virus (BFDV) capsid protein capable of self-assembly and haemagglutination. Journal of Virological Methods, 141(2), 181-187. https://doi.org/10.1016/j.jviromet.2006.12.011</Citation>
</Reference>
<Reference>
<Citation>Strasser, R., Altmann, F., & Steinkellner, H. (2014). Controlled glycosylation of plant-produced recombinant proteins. Current Opinion in Biotechnology, 30C, 95-100. https://doi.org/10.1016/j.copbio.2014.06.008</Citation>
</Reference>
<Reference>
<Citation>Suci, P. A., Klem, M. T., Arce, F. T., Douglas, T., & Young, M. (2006). Assembly of multilayer films incorporating a viral protein cage architecture. Langmuir, 22(21), 8891-8896. https://doi.org/10.1021/la0612062</Citation>
</Reference>
<Reference>
<Citation>Sun, X., Li, W., Zhang, X., Qi, M., Zhang, Z., Zhang, X. E., & Cui, Z. (2016). In vivo targeting and imaging of atherosclerosis using multifunctional virus-like particles of simian virus 40. Nano Letters, 16(10), 6164-6171. https://doi.org/10.1021/acs.nanolett.6b02386</Citation>
</Reference>
<Reference>
<Citation>Thuenemann, E. C., Lenzi, P., Love, A. J., Taliansky, M., Becares, M., Zuniga, S., … Lomonossoff, G. P. (2013). The use of transient expression systems for the rapid production of virus-like particles in plants. Current Pharmaceutical Design, 19(31), 5564-5573.</Citation>
</Reference>
<Reference>
<Citation>Thuenemann, E. C., Meyers, A. E., Verwey, J., Rybicki, E. P., & Lomonossoff, G. P. (2013). A method for rapid production of heteromultimeric protein complexes in plants: Assembly of protective bluetongue virus-like particles. Plant Biotechnology Journal, 11(7), 839-846. https://doi.org/10.1111/pbi.12076</Citation>
</Reference>
<Reference>
<Citation>Tiu, B. D. B., Advincula, R. C., & Steinmetz, N. F. (2018). Nanomanufacture of free-standing, porous, Janus-type films of polymer-plant virus nanoparticle arrays. Methods in Molecular Biology, 1776, 143-157. https://doi.org/10.1007/978-1-4939-7808-3_9</Citation>
</Reference>
<Reference>
<Citation>Torres-Salgado, J. F., Comas-Garcia, M., Villagrana-Escareno, M. V., Duran-Meza, A. L., Ruiz-Garcia, J., & Cadena-Nava, R. D. (2016). Physicochemical study of viral nanoparticles at the air/water interface. Journal of Physical Chemistry B, 120(26), 5864-5873. https://doi.org/10.1021/acs.jpcb.6b00624</Citation>
</Reference>
<Reference>
<Citation>Turner, P. C., Watkins, P. A., Zaitlin, M., & Wilson, T. M. (1987). Tobacco mosaic virus particles uncoat and express their RNA in Xenopus laevis oocytes: Implications for early interactions between plant cells and viruses. Virology, 160(2), 515-517.</Citation>
</Reference>
<Reference>
<Citation>Valley-Omar, Z., Meyers, A. E., Shephard, E. G., Williamson, A. L., & Rybicki, E. P. (2011). Abrogation of contaminating RNA activity in HIV-1 Gag VLPs. Virology Journal, 8, 462. https://doi.org/10.1186/1743-422X-8-462</Citation>
</Reference>
<Reference>
<Citation>van Zyl, A. R., Meyers, A. E., & Rybicki, E. P. (2016). Transient bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana. Biotechnology Reports (Amsterdam, Netherlands), 9, 15-24. https://doi.org/10.1016/j.btre.2015.12.001</Citation>
</Reference>
<Reference>
<Citation>Varsani, A., Williamson, A. L., Rose, R. C., Jaffer, M., & Rybicki, E. P. (2003). Expression of human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv Xanthi. Archives of Virology, 148(9), 1771-1786. https://doi.org/10.1007/s00705-003-0119-4</Citation>
</Reference>
<Reference>
<Citation>Veerapen, V. P., van Zyl, A. R., Wigdorovitz, A., Rybicki, E. P., & Meyers, A. E. (2018). Novel expression of immunogenic foot-and-mouth disease virus-like particles in Nicotiana benthamiana. Virus Research, 244, 213-217. https://doi.org/10.1016/j.virusres.2017.11.027</Citation>
</Reference>
<Reference>
<Citation>Verduin, B. J. (1974). The preparation of CCMV-protein in connection with its association into a spherical particle. FEBS Letters, 45(1), 50-54.</Citation>
</Reference>
<Reference>
<Citation>Walwyn, D. R., Huddy, S. M., & Rybicki, E. P. (2015). Techno-economic analysis of horseradish peroxidase production using a transient expression system in Nicotiana benthamiana. Applied Biochemistry and Biotechnology, 175(2), 841-854. https://doi.org/10.1007/s12010-014-1320-5</Citation>
</Reference>
<Reference>
<Citation>Wang, C., & Steinmetz, N. F. (2019). CD47 blockade and cowpea mosaic virus nanoparticle in situ vaccination triggers phagocytosis and tumor killing. Advanced Healthcare Materials, 8, e1801288. https://doi.org/10.1002/adhm.201801288</Citation>
</Reference>
<Reference>
<Citation>Ward, B. J., Landry, N., Trepanier, S., Mercier, G., Dargis, M., Couture, M., … Vezina, L. P. (2014). Human antibody response to N-glycans present on plant-made influenza virus-like particle (VLP) vaccines. Vaccine, 32(46), 6098-6106. https://doi.org/10.1016/j.vaccine.2014.08.079</Citation>
</Reference>
<Reference>
<Citation>Warzecha, H., Mason, H. S., Lane, C., Tryggvesson, A., Rybicki, E., Williamson, A. L., … Rose, R. C. (2003). Oral immunogenicity of human papillomavirus-like particles expressed in potato. Journal of Virology, 77(16), 8702-8711.</Citation>
</Reference>
<Reference>
<Citation>Wen, A. M., Infusino, M., De Luca, A., Kernan, D. L., Czapar, A. E., Strangi, G., & Steinmetz, N. F. (2015). Interface of physics and biology: Engineering virus-based nanoparticles for biophotonics. Bioconjugate Chemistry, 26(1), 51-62. https://doi.org/10.1021/bc500524f</Citation>
</Reference>
<Reference>
<Citation>Wigdorovitz, A., Mozgovoj, M., Santos, M. J., Parreno, V., Gomez, C., Perez-Filgueira, D. M., … Borca, M. V. (2004). Protective lactogenic immunity conferred by an edible peptide vaccine to bovine rotavirus produced in transgenic plants. Journal of General Virology, 85(Pt. 7), 1825-1832. https://doi.org/10.1099/vir.0.19659-0</Citation>
</Reference>
<Reference>
<Citation>Williamson, A. L., & Rybicki, E. P. (2016). Justification for the inclusion of Gag in HIV vaccine candidates. Expert Review of Vaccines, 15(5), 585-598. https://doi.org/10.1586/14760584.2016.1129904</Citation>
</Reference>
<Reference>
<Citation>Won, S. Y., Hunt, K., Guak, H., Hasaj, B., Charland, N., Landry, N., … Krawczyk, C. M. (2018). Characterization of the innate stimulatory capacity of plant-derived virus-like particles bearing influenza hemagglutinin. Vaccine, 36(52), 8028-8038. https://doi.org/10.1016/j.vaccine.2018.10.099</Citation>
</Reference>
<Reference>
<Citation>Xi, X., Mo, X., Xiao, Y., Yin, B., Lv, C., Wang, Y., … Tian, K. (2016). Production of Escherichia coli-based virus-like particle vaccine against porcine circovirus type 2 challenge in piglets: Structure characterization and protective efficacy validation. Journal of Biotechnology, 223, 8-12. https://doi.org/10.1016/j.jbiotec.2016.02.025</Citation>
</Reference>
<Reference>
<Citation>Yang, M., Lai, H., Sun, H., & Chen, Q. (2017). Virus-like particles that display Zika virus envelope protein domain III induce potent neutralizing immune responses in mice. Scientific Reports, 7(1), 7679. https://doi.org/10.1038/s41598-017-08247-9</Citation>
</Reference>
<Reference>
<Citation>Yu, J., & Langridge, W. H. (2001). A plant-based multicomponent vaccine protects mice from enteric diseases. Nature Biotechnology, 19(6), 548-552. https://doi.org/10.1038/89297</Citation>
</Reference>
<Reference>
<Citation>Zhang, H., Qian, P., Liu, L., Qian, S., Chen, H., & Li, X. (2014). Virus-like particles of chimeric recombinant porcine circovirus type 2 as antigen vehicle carrying foreign epitopes. Viruses, 6(12), 4839-4855. https://doi.org/10.3390/v6124839</Citation>
</Reference>
<Reference>
<Citation>Zhang, W., Zhang, X. E., & Li, F. (2018). Virus-based nanoparticles of simian virus 40 in the field of nanobiotechnology. Biotechnology Journal, 13(6), e1700619. https://doi.org/10.1002/biot.201700619</Citation>
</Reference>
<Reference>
<Citation>Zhao, X. X., Fox, J. M., Olson, N. H., Baker, T. S., & Young, M. J. (1995). In-vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology, 207(2), 486-494. https://doi.org/10.1006/viro.1995.1108</Citation>
</Reference>
<Reference>
<Citation>Zhou, Y., & Kearney, C. M. (2017). Chimeric flock house virus protein A with endoplasmic reticulum-targeting domain enhances viral replication and virus-like particle trans-encapsidation in plants. Virology, 507, 151-160. https://doi.org/10.1016/j.virol.2017.04.018</Citation>
</Reference>
<Reference>
<Citation>Zhou, Y., Maharaj, P. D., Mallajosyula, J. K., McCormick, A. A., & Kearney, C. M. (2015). In planta production of flock house virus transencapsidated RNA and its potential use as a vaccine. Molecular Biotechnology, 57(4), 325-336. https://doi.org/10.1007/s12033-014-9826-1</Citation>
</Reference>
<Reference>
<Citation>Zost, S. J., Parkhouse, K., Gumina, M. E., Kim, K., Diaz Perez, S., Wilson, P. C., … Hensley, S. E. (2017). Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proceedings of the National Academy of Sciences of the United States of America, 114(47), 12578-12583. https://doi.org/10.1073/pnas.1712377114</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
</country>
</list>
<tree>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Rybicki, Edward P" sort="Rybicki, Edward P" uniqKey="Rybicki E" first="Edward P" last="Rybicki">Edward P. Rybicki</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000028 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000028 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31486296
   |texte=   Plant molecular farming of virus-like nanoparticles as vaccines and reagents.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31486296" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024