Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The impact of Pseudomonas syringae type III effectors on transient protein expression in tobacco.

Identifieur interne : 000378 ( Main/Corpus ); précédent : 000377; suivant : 000379

The impact of Pseudomonas syringae type III effectors on transient protein expression in tobacco.

Auteurs : J F Buyel ; J J Buyel ; C. Haase ; R. Fischer

Source :

RBID : pubmed:25243954

English descriptors

Abstract

The production of recombinant proteins in plants is often achieved by transient expression, e.g. following the injection or vacuum infiltration of Agrobacterium tumefaciens into tobacco leaves. We investigated the associated plant defence responses, revealing that callose deposition is triggered by T-DNA transfer and that subsets of secondary metabolites accumulate in response to mechanical wounding or the presence of bacteria. We also tested the ability of five co-expressed type III effector proteins from Pseudomonas syringae to modulate these defence responses and increase the yield of two model proteins, the fluorescent marker DsRed and monoclonal antibody 2G12. HopF2 and AvrRpt2 induced necrotic lesions 5 days post-injection (dpi) even at low doses (OD600 nm  = 0.0078), and increased the concentration of certain secondary metabolites. HopAO1 significantly reduced the number of callose deposits at 2 dpi compared to cells expressing DsRed and 2G12 alone, whereas HopI1 reduced the concentration of several secondary metabolites at 5 dpi compared to cells expressing DsRed and 2G12 alone. Co-expression with HopAO1, AvrPtoB or HopI1 increased the concentrations of DsRed and 2G12 increased by ~6% but this was not a significant change. In contrast, HopF2 and AvrRpt2 significantly reduced the concentrations of DsRed and 2G12 by 34% and 22%, respectively. Our results show that type III effector proteins can modulate plant defence responses and secondary metabolite profiles but that transient co-expression is not sufficient to increase the yields of target recombinant proteins in tobacco.

DOI: 10.1111/plb.12264
PubMed: 25243954

Links to Exploration step

pubmed:25243954

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The impact of Pseudomonas syringae type III effectors on transient protein expression in tobacco.</title>
<author>
<name sortKey="Buyel, J F" sort="Buyel, J F" uniqKey="Buyel J" first="J F" last="Buyel">J F Buyel</name>
<affiliation>
<nlm:affiliation>Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buyel, J J" sort="Buyel, J J" uniqKey="Buyel J" first="J J" last="Buyel">J J Buyel</name>
</author>
<author>
<name sortKey="Haase, C" sort="Haase, C" uniqKey="Haase C" first="C" last="Haase">C. Haase</name>
</author>
<author>
<name sortKey="Fischer, R" sort="Fischer, R" uniqKey="Fischer R" first="R" last="Fischer">R. Fischer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25243954</idno>
<idno type="pmid">25243954</idno>
<idno type="doi">10.1111/plb.12264</idno>
<idno type="wicri:Area/Main/Corpus">000378</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000378</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The impact of Pseudomonas syringae type III effectors on transient protein expression in tobacco.</title>
<author>
<name sortKey="Buyel, J F" sort="Buyel, J F" uniqKey="Buyel J" first="J F" last="Buyel">J F Buyel</name>
<affiliation>
<nlm:affiliation>Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buyel, J J" sort="Buyel, J J" uniqKey="Buyel J" first="J J" last="Buyel">J J Buyel</name>
</author>
<author>
<name sortKey="Haase, C" sort="Haase, C" uniqKey="Haase C" first="C" last="Haase">C. Haase</name>
</author>
<author>
<name sortKey="Fischer, R" sort="Fischer, R" uniqKey="Fischer R" first="R" last="Fischer">R. Fischer</name>
</author>
</analytic>
<series>
<title level="j">Plant biology (Stuttgart, Germany)</title>
<idno type="eISSN">1438-8677</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium tumefaciens (genetics)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>DNA, Bacterial (MeSH)</term>
<term>Fluorescent Dyes (metabolism)</term>
<term>Glucans (metabolism)</term>
<term>Luminescent Proteins (genetics)</term>
<term>Luminescent Proteins (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Protein Engineering (methods)</term>
<term>Pseudomonas syringae (pathogenicity)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Secondary Metabolism (MeSH)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
<term>Tobacco (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Luminescent Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Fluorescent Dyes</term>
<term>Glucans</term>
<term>Luminescent Proteins</term>
<term>Recombinant Proteins</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Protein Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA, Bacterial</term>
<term>Molecular Sequence Data</term>
<term>Plants, Genetically Modified</term>
<term>Secondary Metabolism</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The production of recombinant proteins in plants is often achieved by transient expression, e.g. following the injection or vacuum infiltration of Agrobacterium tumefaciens into tobacco leaves. We investigated the associated plant defence responses, revealing that callose deposition is triggered by T-DNA transfer and that subsets of secondary metabolites accumulate in response to mechanical wounding or the presence of bacteria. We also tested the ability of five co-expressed type III effector proteins from Pseudomonas syringae to modulate these defence responses and increase the yield of two model proteins, the fluorescent marker DsRed and monoclonal antibody 2G12. HopF2 and AvrRpt2 induced necrotic lesions 5 days post-injection (dpi) even at low doses (OD600 nm  = 0.0078), and increased the concentration of certain secondary metabolites. HopAO1 significantly reduced the number of callose deposits at 2 dpi compared to cells expressing DsRed and 2G12 alone, whereas HopI1 reduced the concentration of several secondary metabolites at 5 dpi compared to cells expressing DsRed and 2G12 alone. Co-expression with HopAO1, AvrPtoB or HopI1 increased the concentrations of DsRed and 2G12 increased by ~6% but this was not a significant change. In contrast, HopF2 and AvrRpt2 significantly reduced the concentrations of DsRed and 2G12 by 34% and 22%, respectively. Our results show that type III effector proteins can modulate plant defence responses and secondary metabolite profiles but that transient co-expression is not sufficient to increase the yields of target recombinant proteins in tobacco. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25243954</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>03</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1438-8677</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant biology (Stuttgart, Germany)</Title>
<ISOAbbreviation>Plant Biol (Stuttg)</ISOAbbreviation>
</Journal>
<ArticleTitle>The impact of Pseudomonas syringae type III effectors on transient protein expression in tobacco.</ArticleTitle>
<Pagination>
<MedlinePgn>484-92</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/plb.12264</ELocationID>
<Abstract>
<AbstractText>The production of recombinant proteins in plants is often achieved by transient expression, e.g. following the injection or vacuum infiltration of Agrobacterium tumefaciens into tobacco leaves. We investigated the associated plant defence responses, revealing that callose deposition is triggered by T-DNA transfer and that subsets of secondary metabolites accumulate in response to mechanical wounding or the presence of bacteria. We also tested the ability of five co-expressed type III effector proteins from Pseudomonas syringae to modulate these defence responses and increase the yield of two model proteins, the fluorescent marker DsRed and monoclonal antibody 2G12. HopF2 and AvrRpt2 induced necrotic lesions 5 days post-injection (dpi) even at low doses (OD600 nm  = 0.0078), and increased the concentration of certain secondary metabolites. HopAO1 significantly reduced the number of callose deposits at 2 dpi compared to cells expressing DsRed and 2G12 alone, whereas HopI1 reduced the concentration of several secondary metabolites at 5 dpi compared to cells expressing DsRed and 2G12 alone. Co-expression with HopAO1, AvrPtoB or HopI1 increased the concentrations of DsRed and 2G12 increased by ~6% but this was not a significant change. In contrast, HopF2 and AvrRpt2 significantly reduced the concentrations of DsRed and 2G12 by 34% and 22%, respectively. Our results show that type III effector proteins can modulate plant defence responses and secondary metabolite profiles but that transient co-expression is not sufficient to increase the yields of target recombinant proteins in tobacco. </AbstractText>
<CopyrightInformation>© 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Buyel</LastName>
<ForeName>J F</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buyel</LastName>
<ForeName>J J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haase</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fischer</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AY027531</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Biol (Stuttg)</MedlineTA>
<NlmUniqueID>101148926</NlmUniqueID>
<ISSNLinking>1435-8603</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005456">Fluorescent Dyes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005936">Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008164">Luminescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C036483">T-DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C081695">avrPto protein, Pseudomonas syringae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C420919">avrRpt2 protein, Pseudomonas syringae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C413663">fluorescent protein 583</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9064-51-1</RegistryNumber>
<NameOfSubstance UI="C048306">callose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005456" MajorTopicYN="N">Fluorescent Dyes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005936" MajorTopicYN="N">Glucans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008164" MajorTopicYN="N">Luminescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015202" MajorTopicYN="N">Protein Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044224" MajorTopicYN="N">Pseudomonas syringae</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064210" MajorTopicYN="N">Secondary Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Callose deposition</Keyword>
<Keyword MajorTopicYN="N">plant defence responses</Keyword>
<Keyword MajorTopicYN="N">secondary metabolites</Keyword>
<Keyword MajorTopicYN="N">transient protein expression</Keyword>
<Keyword MajorTopicYN="N">type III effector</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25243954</ArticleId>
<ArticleId IdType="doi">10.1111/plb.12264</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000378 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000378 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25243954
   |texte=   The impact of Pseudomonas syringae type III effectors on transient protein expression in tobacco.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25243954" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024