Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of Agrobacterium-mediated transient expression system in Caragana intermedia and characterization of CiDREB1C in stress response.

Identifieur interne : 000100 ( Main/Corpus ); précédent : 000099; suivant : 000101

Development of Agrobacterium-mediated transient expression system in Caragana intermedia and characterization of CiDREB1C in stress response.

Auteurs : Kun Liu ; Qi Yang ; Tianrui Yang ; Yang Wu ; Guangxia Wang ; Feiyun Yang ; Ruigang Wang ; Xiaofei Lin ; Guojing Li

Source :

RBID : pubmed:31170915

English descriptors

Abstract

BACKGROUND

The Agrobacterium-mediated transient transformation is a versatile and indispensable way of rapid analyzing gene function in plants. Despite this transient expression system has been successfully applied in a number of plant species, it is poorly developed in Caragana intermedia.

RESULTS

In this study, we established an Agrobacterium-mediated transient expression system in C. intermedia leaves and optimized the effect of different Agrobacterial strains, several surfactants and the concentration of Silwet L-77, which would affect transient expression efficiency. Among the 5 Agrobacterial strains examined, GV3101 produced the highest GUS expression level. Besides, higher level of transient expression was observed in plants infiltrated with Silwet L-77 than with Triton X-100 or Tween-20. Silwet L-77 at a concentration of 0.001% greatly improved the level of GUS transient expression. Real-time PCR showed that expression of CiDREB1C was highly up-regulated in transiently expressed plants and reached the highest level at the 2nd day after infiltration. Based on this optimized transient transformation method, we characterized CiDREB1C function in response to drought, salt and ABA treatment. The results showed that transiently expressed CiDREB1C in C. intermedia leaves could enhance the survival rate and chlorophyll content, and reduce the lodging rate compared with the control seedlings under drought, salt and ABA treatments. Furthermore, the rate of leaf shedding of CiDREB1C transient expression seedlings was lower than that of the control under ABA treatment.

CONCLUSIONS

The optimized transient expression condition in C. intermedia leaves were infiltrated with Agrobacterial strains GV3101 plus Silwet L-77 at a concentration of 0.001% added into the infiltration medium. Transiently expressed CiDREB1C enhanced drought, salt and ABA stress tolerance, indicated that it was a suitable and effective tool to determine gene function involved in abiotic stress response in C. intermedia.


DOI: 10.1186/s12870-019-1800-4
PubMed: 31170915
PubMed Central: PMC6554893

Links to Exploration step

pubmed:31170915

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development of Agrobacterium-mediated transient expression system in Caragana intermedia and characterization of CiDREB1C in stress response.</title>
<author>
<name sortKey="Liu, Kun" sort="Liu, Kun" uniqKey="Liu K" first="Kun" last="Liu">Kun Liu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Qi" sort="Yang, Qi" uniqKey="Yang Q" first="Qi" last="Yang">Qi Yang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Tianrui" sort="Yang, Tianrui" uniqKey="Yang T" first="Tianrui" last="Yang">Tianrui Yang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yang" sort="Wu, Yang" uniqKey="Wu Y" first="Yang" last="Wu">Yang Wu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Guangxia" sort="Wang, Guangxia" uniqKey="Wang G" first="Guangxia" last="Wang">Guangxia Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Feiyun" sort="Yang, Feiyun" uniqKey="Yang F" first="Feiyun" last="Yang">Feiyun Yang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Food Sciences and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ruigang" sort="Wang, Ruigang" uniqKey="Wang R" first="Ruigang" last="Wang">Ruigang Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Xiaofei" sort="Lin, Xiaofei" uniqKey="Lin X" first="Xiaofei" last="Lin">Xiaofei Lin</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, People's Republic of China. linxiaofei04@hotmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Guojing" sort="Li, Guojing" uniqKey="Li G" first="Guojing" last="Li">Guojing Li</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China. liguojing@imau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31170915</idno>
<idno type="pmid">31170915</idno>
<idno type="doi">10.1186/s12870-019-1800-4</idno>
<idno type="pmc">PMC6554893</idno>
<idno type="wicri:Area/Main/Corpus">000100</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000100</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Development of Agrobacterium-mediated transient expression system in Caragana intermedia and characterization of CiDREB1C in stress response.</title>
<author>
<name sortKey="Liu, Kun" sort="Liu, Kun" uniqKey="Liu K" first="Kun" last="Liu">Kun Liu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Qi" sort="Yang, Qi" uniqKey="Yang Q" first="Qi" last="Yang">Qi Yang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Tianrui" sort="Yang, Tianrui" uniqKey="Yang T" first="Tianrui" last="Yang">Tianrui Yang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yang" sort="Wu, Yang" uniqKey="Wu Y" first="Yang" last="Wu">Yang Wu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Guangxia" sort="Wang, Guangxia" uniqKey="Wang G" first="Guangxia" last="Wang">Guangxia Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Feiyun" sort="Yang, Feiyun" uniqKey="Yang F" first="Feiyun" last="Yang">Feiyun Yang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Food Sciences and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ruigang" sort="Wang, Ruigang" uniqKey="Wang R" first="Ruigang" last="Wang">Ruigang Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Xiaofei" sort="Lin, Xiaofei" uniqKey="Lin X" first="Xiaofei" last="Lin">Xiaofei Lin</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, People's Republic of China. linxiaofei04@hotmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Guojing" sort="Li, Guojing" uniqKey="Li G" first="Guojing" last="Li">Guojing Li</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China. liguojing@imau.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (genetics)</term>
<term>Arabidopsis Proteins (MeSH)</term>
<term>Caragana (genetics)</term>
<term>Caragana (physiology)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Engineering (methods)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Arabidopsis Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium</term>
<term>Caragana</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genetic Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Caragana</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The Agrobacterium-mediated transient transformation is a versatile and indispensable way of rapid analyzing gene function in plants. Despite this transient expression system has been successfully applied in a number of plant species, it is poorly developed in Caragana intermedia.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study, we established an Agrobacterium-mediated transient expression system in C. intermedia leaves and optimized the effect of different Agrobacterial strains, several surfactants and the concentration of Silwet L-77, which would affect transient expression efficiency. Among the 5 Agrobacterial strains examined, GV3101 produced the highest GUS expression level. Besides, higher level of transient expression was observed in plants infiltrated with Silwet L-77 than with Triton X-100 or Tween-20. Silwet L-77 at a concentration of 0.001% greatly improved the level of GUS transient expression. Real-time PCR showed that expression of CiDREB1C was highly up-regulated in transiently expressed plants and reached the highest level at the 2nd day after infiltration. Based on this optimized transient transformation method, we characterized CiDREB1C function in response to drought, salt and ABA treatment. The results showed that transiently expressed CiDREB1C in C. intermedia leaves could enhance the survival rate and chlorophyll content, and reduce the lodging rate compared with the control seedlings under drought, salt and ABA treatments. Furthermore, the rate of leaf shedding of CiDREB1C transient expression seedlings was lower than that of the control under ABA treatment.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The optimized transient expression condition in C. intermedia leaves were infiltrated with Agrobacterial strains GV3101 plus Silwet L-77 at a concentration of 0.001% added into the infiltration medium. Transiently expressed CiDREB1C enhanced drought, salt and ABA stress tolerance, indicated that it was a suitable and effective tool to determine gene function involved in abiotic stress response in C. intermedia.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31170915</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>07</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jun</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Development of Agrobacterium-mediated transient expression system in Caragana intermedia and characterization of CiDREB1C in stress response.</ArticleTitle>
<Pagination>
<MedlinePgn>237</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-019-1800-4</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The Agrobacterium-mediated transient transformation is a versatile and indispensable way of rapid analyzing gene function in plants. Despite this transient expression system has been successfully applied in a number of plant species, it is poorly developed in Caragana intermedia.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this study, we established an Agrobacterium-mediated transient expression system in C. intermedia leaves and optimized the effect of different Agrobacterial strains, several surfactants and the concentration of Silwet L-77, which would affect transient expression efficiency. Among the 5 Agrobacterial strains examined, GV3101 produced the highest GUS expression level. Besides, higher level of transient expression was observed in plants infiltrated with Silwet L-77 than with Triton X-100 or Tween-20. Silwet L-77 at a concentration of 0.001% greatly improved the level of GUS transient expression. Real-time PCR showed that expression of CiDREB1C was highly up-regulated in transiently expressed plants and reached the highest level at the 2nd day after infiltration. Based on this optimized transient transformation method, we characterized CiDREB1C function in response to drought, salt and ABA treatment. The results showed that transiently expressed CiDREB1C in C. intermedia leaves could enhance the survival rate and chlorophyll content, and reduce the lodging rate compared with the control seedlings under drought, salt and ABA treatments. Furthermore, the rate of leaf shedding of CiDREB1C transient expression seedlings was lower than that of the control under ABA treatment.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The optimized transient expression condition in C. intermedia leaves were infiltrated with Agrobacterial strains GV3101 plus Silwet L-77 at a concentration of 0.001% added into the infiltration medium. Transiently expressed CiDREB1C enhanced drought, salt and ABA stress tolerance, indicated that it was a suitable and effective tool to determine gene function involved in abiotic stress response in C. intermedia.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Kun</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Tianrui</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Guangxia</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Feiyun</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Food Sciences and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ruigang</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Xiaofei</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, People's Republic of China. linxiaofei04@hotmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Guojing</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0335-183X</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, People's Republic of China. liguojing@imau.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31660065</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C114578">DREB1A protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032602" MajorTopicYN="N">Caragana</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Abiotic stress</Keyword>
<Keyword MajorTopicYN="N">Caragana intermedia</Keyword>
<Keyword MajorTopicYN="N">CiDREB1C</Keyword>
<Keyword MajorTopicYN="N">Transient expression</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31170915</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-019-1800-4</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-019-1800-4</ArticleId>
<ArticleId IdType="pmc">PMC6554893</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 May;87(10):3879-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2003 Mar;21(7):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12789416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Apr;220(6):875-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15538622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Apr;28(4):589-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19116720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Aug;28(8):1159-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19484242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010;61(1):261-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Mar;5(3):296-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20037472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2010 May 07;3:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20459651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Jul;31(7):1269-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22466450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Genet. 2012 Oct;50(9-10):761-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22610523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2013 Apr;250(2):451-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22766977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1996 May;15(9):653-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1988 Jul;11(4):433-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rice (N Y). 2012 Aug 31;5(1):23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24279881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014 Apr 30;9:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24785194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 May 09;14:127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24886417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2015 Jan;34(1):133-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25326714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2015 Feb;34(2):291-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25429877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Dec;12(9):1231-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25431200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(9):e29626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25763698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jul 15;10(7):e0131626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26176780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Aug 22;15:208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26297025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2015;79(11):1919</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26312649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2017 Jan;254(1):239-251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26795343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2016 Mar 11;12:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26973706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2016 Jun 24;16(1):53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27342637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Aug 09;7:1171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27555856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2016 Oct 19;12:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27777610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Springerplus. 2016 Oct 21;5(1):1825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27818863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2017 May;94(1-2):109-124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28258553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2018 Feb 9;18(1):31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29426284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Jul;23(7):623-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29735429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Aug;6(2):271-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7920717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Aug;10(8):1391-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000100 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000100 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31170915
   |texte=   Development of Agrobacterium-mediated transient expression system in Caragana intermedia and characterization of CiDREB1C in stress response.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31170915" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024