Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transient expression and purification of β-caryophyllene synthase in Nicotiana benthamiana to produce β-caryophyllene in vitro.

Identifieur interne : 000041 ( Main/Corpus ); précédent : 000040; suivant : 000042

Transient expression and purification of β-caryophyllene synthase in Nicotiana benthamiana to produce β-caryophyllene in vitro.

Auteurs : Saraladevi Muthusamy ; Ramesh R. Vetukuri ; Anneli Lundgren ; Suresh Ganji ; Li-Hua Zhu ; Peter E. Brodelius ; Selvaraju Kanagarajan

Source :

RBID : pubmed:32377446

Abstract

The sesquiterpene β-caryophyllene is an ubiquitous component in many plants that has commercially been used as an aroma in cosmetics and perfumes. Recent studies have shown its potential use as a therapeutic agent and biofuel. Currently, β-caryophyllene is isolated from large amounts of plant material. Molecular farming based on the Nicotiana benthamiana transient expression system may be used for a more sustainable production of β-caryophyllene. In this study, a full-length cDNA of a new duplicated β-caryophyllene synthase from Artemisia annua (AaCPS1) was isolated and functionally characterized. In order to produce β-caryophyllene in vitro, the AaCPS1 was cloned into a plant viral-based vector pEAQ-HT. Subsequently, the plasmid was transferred into the Agrobacterium and agroinfiltrated into N. benthamiana leaves. The AaCPS1 expression was analyzed by quantitative PCR at different time points after agroinfiltration. The highest level of transcripts was observed at 9 days post infiltration (dpi). The AaCPS1 protein was extracted from the leaves at 9 dpi and purified by cobalt-nitrilotriacetate (Co-NTA) affinity chromatography using histidine tag with a yield of 89 mg kg-1 fresh weight of leaves. The protein expression of AaCPS1 was also confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses. AaCPS1 protein uses farnesyl diphosphate (FPP) as a substrate to produce β-caryophyllene. Product identification and determination of the activity of purified AaCPS1 were done by gas chromatography-mass spectrometry (GC-MS). GC-MS results revealed that the AaCPS1 produced maximum 26.5 ± 1 mg of β-caryophyllene per kilogram fresh weight of leaves after assaying with FPP for 6 h. Using AaCPS1 as a proof of concept, we demonstrate that N. benthamiana can be considered as an expression system for production of plant proteins that catalyze the formation of valuable chemicals for industrial applications.

DOI: 10.7717/peerj.8904
PubMed: 32377446
PubMed Central: PMC7194099

Links to Exploration step

pubmed:32377446

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transient expression and purification of β-caryophyllene synthase in
<i>Nicotiana benthamiana</i>
to produce β-caryophyllene in vitro.</title>
<author>
<name sortKey="Muthusamy, Saraladevi" sort="Muthusamy, Saraladevi" uniqKey="Muthusamy S" first="Saraladevi" last="Muthusamy">Saraladevi Muthusamy</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vetukuri, Ramesh R" sort="Vetukuri, Ramesh R" uniqKey="Vetukuri R" first="Ramesh R" last="Vetukuri">Ramesh R. Vetukuri</name>
<affiliation>
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lundgren, Anneli" sort="Lundgren, Anneli" uniqKey="Lundgren A" first="Anneli" last="Lundgren">Anneli Lundgren</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ganji, Suresh" sort="Ganji, Suresh" uniqKey="Ganji S" first="Suresh" last="Ganji">Suresh Ganji</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Li Hua" sort="Zhu, Li Hua" uniqKey="Zhu L" first="Li-Hua" last="Zhu">Li-Hua Zhu</name>
<affiliation>
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brodelius, Peter E" sort="Brodelius, Peter E" uniqKey="Brodelius P" first="Peter E" last="Brodelius">Peter E. Brodelius</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kanagarajan, Selvaraju" sort="Kanagarajan, Selvaraju" uniqKey="Kanagarajan S" first="Selvaraju" last="Kanagarajan">Selvaraju Kanagarajan</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32377446</idno>
<idno type="pmid">32377446</idno>
<idno type="doi">10.7717/peerj.8904</idno>
<idno type="pmc">PMC7194099</idno>
<idno type="wicri:Area/Main/Corpus">000041</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000041</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transient expression and purification of β-caryophyllene synthase in
<i>Nicotiana benthamiana</i>
to produce β-caryophyllene in vitro.</title>
<author>
<name sortKey="Muthusamy, Saraladevi" sort="Muthusamy, Saraladevi" uniqKey="Muthusamy S" first="Saraladevi" last="Muthusamy">Saraladevi Muthusamy</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vetukuri, Ramesh R" sort="Vetukuri, Ramesh R" uniqKey="Vetukuri R" first="Ramesh R" last="Vetukuri">Ramesh R. Vetukuri</name>
<affiliation>
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lundgren, Anneli" sort="Lundgren, Anneli" uniqKey="Lundgren A" first="Anneli" last="Lundgren">Anneli Lundgren</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ganji, Suresh" sort="Ganji, Suresh" uniqKey="Ganji S" first="Suresh" last="Ganji">Suresh Ganji</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Li Hua" sort="Zhu, Li Hua" uniqKey="Zhu L" first="Li-Hua" last="Zhu">Li-Hua Zhu</name>
<affiliation>
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brodelius, Peter E" sort="Brodelius, Peter E" uniqKey="Brodelius P" first="Peter E" last="Brodelius">Peter E. Brodelius</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kanagarajan, Selvaraju" sort="Kanagarajan, Selvaraju" uniqKey="Kanagarajan S" first="Selvaraju" last="Kanagarajan">Selvaraju Kanagarajan</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PeerJ</title>
<idno type="ISSN">2167-8359</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The sesquiterpene β-caryophyllene is an ubiquitous component in many plants that has commercially been used as an aroma in cosmetics and perfumes. Recent studies have shown its potential use as a therapeutic agent and biofuel. Currently, β-caryophyllene is isolated from large amounts of plant material. Molecular farming based on the
<i>Nicotiana benthamiana</i>
transient expression system may be used for a more sustainable production of β-caryophyllene. In this study, a full-length cDNA of a new duplicated β-caryophyllene synthase from
<i>Artemisia annua</i>
(
<i>AaCPS1</i>
) was isolated and functionally characterized. In order to produce β-caryophyllene in vitro, the
<i>AaCPS1</i>
was cloned into a plant viral-based vector pEAQ-
<i>HT</i>
. Subsequently, the plasmid was transferred into the
<i>Agrobacterium</i>
and agroinfiltrated into
<i>N. benthamiana</i>
leaves. The
<i>AaCPS1</i>
expression was analyzed by quantitative PCR at different time points after agroinfiltration. The highest level of transcripts was observed at 9 days post infiltration (dpi). The AaCPS1 protein was extracted from the leaves at 9 dpi and purified by cobalt-nitrilotriacetate (Co-NTA) affinity chromatography using histidine tag with a yield of 89 mg kg
<sup>-1</sup>
fresh weight of leaves. The protein expression of AaCPS1 was also confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses. AaCPS1 protein uses farnesyl diphosphate (FPP) as a substrate to produce β-caryophyllene. Product identification and determination of the activity of purified AaCPS1 were done by gas chromatography-mass spectrometry (GC-MS). GC-MS results revealed that the AaCPS1 produced maximum 26.5 ± 1 mg of β-caryophyllene per kilogram fresh weight of leaves after assaying with FPP for 6 h. Using AaCPS1 as a proof of concept, we demonstrate that
<i>N. benthamiana</i>
can be considered as an expression system for production of plant proteins that catalyze the formation of valuable chemicals for industrial applications.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32377446</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2167-8359</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PeerJ</Title>
<ISOAbbreviation>PeerJ</ISOAbbreviation>
</Journal>
<ArticleTitle>Transient expression and purification of β-caryophyllene synthase in
<i>Nicotiana benthamiana</i>
to produce β-caryophyllene in vitro.</ArticleTitle>
<Pagination>
<MedlinePgn>e8904</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.7717/peerj.8904</ELocationID>
<Abstract>
<AbstractText>The sesquiterpene β-caryophyllene is an ubiquitous component in many plants that has commercially been used as an aroma in cosmetics and perfumes. Recent studies have shown its potential use as a therapeutic agent and biofuel. Currently, β-caryophyllene is isolated from large amounts of plant material. Molecular farming based on the
<i>Nicotiana benthamiana</i>
transient expression system may be used for a more sustainable production of β-caryophyllene. In this study, a full-length cDNA of a new duplicated β-caryophyllene synthase from
<i>Artemisia annua</i>
(
<i>AaCPS1</i>
) was isolated and functionally characterized. In order to produce β-caryophyllene in vitro, the
<i>AaCPS1</i>
was cloned into a plant viral-based vector pEAQ-
<i>HT</i>
. Subsequently, the plasmid was transferred into the
<i>Agrobacterium</i>
and agroinfiltrated into
<i>N. benthamiana</i>
leaves. The
<i>AaCPS1</i>
expression was analyzed by quantitative PCR at different time points after agroinfiltration. The highest level of transcripts was observed at 9 days post infiltration (dpi). The AaCPS1 protein was extracted from the leaves at 9 dpi and purified by cobalt-nitrilotriacetate (Co-NTA) affinity chromatography using histidine tag with a yield of 89 mg kg
<sup>-1</sup>
fresh weight of leaves. The protein expression of AaCPS1 was also confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses. AaCPS1 protein uses farnesyl diphosphate (FPP) as a substrate to produce β-caryophyllene. Product identification and determination of the activity of purified AaCPS1 were done by gas chromatography-mass spectrometry (GC-MS). GC-MS results revealed that the AaCPS1 produced maximum 26.5 ± 1 mg of β-caryophyllene per kilogram fresh weight of leaves after assaying with FPP for 6 h. Using AaCPS1 as a proof of concept, we demonstrate that
<i>N. benthamiana</i>
can be considered as an expression system for production of plant proteins that catalyze the formation of valuable chemicals for industrial applications.</AbstractText>
<CopyrightInformation>© 2020 Muthusamy et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Muthusamy</LastName>
<ForeName>Saraladevi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vetukuri</LastName>
<ForeName>Ramesh R</ForeName>
<Initials>RR</Initials>
<Identifier Source="ORCID">0000-0001-7129-5326</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lundgren</LastName>
<ForeName>Anneli</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ganji</LastName>
<ForeName>Suresh</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-8849-9883</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Li-Hua</ForeName>
<Initials>LH</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brodelius</LastName>
<ForeName>Peter E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kanagarajan</LastName>
<ForeName>Selvaraju</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0003-4341-9322</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PeerJ</MedlineTA>
<NlmUniqueID>101603425</NlmUniqueID>
<ISSNLinking>2167-8359</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AaCPS1</Keyword>
<Keyword MajorTopicYN="N">Artemisia annua</Keyword>
<Keyword MajorTopicYN="N">Nicotiana benthamiana</Keyword>
<Keyword MajorTopicYN="N">Phylogenetics</Keyword>
<Keyword MajorTopicYN="N">Sesquiterpene synthase</Keyword>
<Keyword MajorTopicYN="N">Terpenoids</Keyword>
<Keyword MajorTopicYN="N">Transient expression</Keyword>
<Keyword MajorTopicYN="N">β-caryophyllene synthase</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32377446</ArticleId>
<ArticleId IdType="doi">10.7717/peerj.8904</ArticleId>
<ArticleId IdType="pii">8904</ArticleId>
<ArticleId IdType="pmc">PMC7194099</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1232-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Jul 16;584(14):2965-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20553718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2006 Aug;106(8):3412-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16895335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Behav. 2014 Aug;135:119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24930711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Sep 19;277(5333):1815-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9295271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Nov;61(5):523-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Oncol. 2010 Dec;21(12):2420-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20494963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Sep;7(7):682-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epilepsy Behav. 2016 Mar;56:26-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26827298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 1999;34(2):95-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10333387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Nov;67(22):2469-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):E5454-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26351689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 May 1;30(9):e36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2018 Jun 4;11(6):776-788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29703587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflamm Res. 2016 Nov;65(11):869-879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27379721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Feb;20(2):482-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropharmacology. 2017 Oct;125:207-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28729222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):997-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22187939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 22;8(11):e80643</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24278301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2010 Mar-Apr;28(2):214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19961918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2007 Jan;51(1):71-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16908191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e33010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Mar;57(3):588-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26858285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Mar;8(3):454-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25598143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):741-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21474436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Nov;9(11):5134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2601712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2020 Jan 22;10(1):920</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31969582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng Commun. 2018 Jan 05;6:13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29349039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Jun;13(5):708-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25470212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Jun;8(5):638-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20514694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2017 Jul;42:185-193</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28687337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Nutr Metab. 2003;47(3-4):95-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12743459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytother Res. 2018 Dec;32(12):2376-2388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30281175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Jun 6;9(6):946-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26995295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Dec;76(23):7723-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Sci Nutr. 2008 Nov-Dec;59(7-8):619-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19382349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2016 Feb 5;245:50-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26748309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 May 15;168(8):848-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21185107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2016 Nov;38:159-169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27421621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Jul;31(7):1309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2016 May 05;15:74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27149950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pain. 2013 May;17(5):664-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23138934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Jul;269(14):3570-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Jun;72(9):897-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21492885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Mar 09;11:45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21388533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2015 Jun 26;20(7):11808-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26132906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Dec 03;5(12):e14222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21151979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta Med. 2011 Oct;77(15):1759-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21509717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2006 Aug 1;452(1):17-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16839518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000041 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000041 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32377446
   |texte=   Transient expression and purification of β-caryophyllene synthase in Nicotiana benthamiana to produce β-caryophyllene in vitro.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32377446" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024