Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice.

Identifieur interne : 003715 ( PubMed/Curation ); précédent : 003714; suivant : 003716

Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice.

Auteurs : Nozomi Tomimatsu [États-Unis] ; Bipasha Mukherjee [États-Unis] ; Molly Catherine Hardebeck [États-Unis] ; Mariya Ilcheva [États-Unis] ; Cristel Vanessa Camacho ; Janelle Louise Harris [Australie] ; Matthew Porteus [États-Unis] ; Bertrand Llorente [France] ; Kum Kum Khanna [Australie] ; Sandeep Burma [États-Unis]

Source :

RBID : pubmed:24705021

Descripteurs français

English descriptors

Abstract

Resection of DNA double-strand breaks (DSBs) is a pivotal step during which the choice between NHEJ and HR DNA repair pathways is made. Although CDKs are known to control initiation of resection, their role in regulating long-range resection remains elusive. Here we show that CDKs 1/2 phosphorylate the long-range resection nuclease EXO1 at four C-terminal S/TP sites during S/G2 phases of the cell cycle. Impairment of EXO1 phosphorylation attenuates resection, chromosomal integrity, cell survival and HR, but augments NHEJ upon DNA damage. In contrast, cells expressing phospho-mimic EXO1 are proficient in resection even after CDK inhibition and favour HR over NHEJ. Mutation of cyclin-binding sites on EXO1 attenuates CDK binding and EXO1 phosphorylation, causing a resection defect that can be rescued by phospho-mimic mutations. Mechanistically, phosphorylation of EXO1 augments its recruitment to DNA breaks possibly via interactions with BRCA1. In summary, phosphorylation of EXO1 by CDKs is a novel mechanism regulating repair pathway choice.

DOI: 10.1038/ncomms4561
PubMed: 24705021

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24705021

Curation

No country items

Cristel Vanessa Camacho
<affiliation>
<nlm:affiliation>1] Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA [2].</nlm:affiliation>
<wicri:noCountry code="subField">USA [2]</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice.</title>
<author>
<name sortKey="Tomimatsu, Nozomi" sort="Tomimatsu, Nozomi" uniqKey="Tomimatsu N" first="Nozomi" last="Tomimatsu">Nozomi Tomimatsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mukherjee, Bipasha" sort="Mukherjee, Bipasha" uniqKey="Mukherjee B" first="Bipasha" last="Mukherjee">Bipasha Mukherjee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Catherine Hardebeck, Molly" sort="Catherine Hardebeck, Molly" uniqKey="Catherine Hardebeck M" first="Molly" last="Catherine Hardebeck">Molly Catherine Hardebeck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ilcheva, Mariya" sort="Ilcheva, Mariya" uniqKey="Ilcheva M" first="Mariya" last="Ilcheva">Mariya Ilcheva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vanessa Camacho, Cristel" sort="Vanessa Camacho, Cristel" uniqKey="Vanessa Camacho C" first="Cristel" last="Vanessa Camacho">Cristel Vanessa Camacho</name>
<affiliation>
<nlm:affiliation>1] Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA [2].</nlm:affiliation>
<wicri:noCountry code="subField">USA [2]</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Louise Harris, Janelle" sort="Louise Harris, Janelle" uniqKey="Louise Harris J" first="Janelle" last="Louise Harris">Janelle Louise Harris</name>
<affiliation wicri:level="1">
<nlm:affiliation>Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Porteus, Matthew" sort="Porteus, Matthew" uniqKey="Porteus M" first="Matthew" last="Porteus">Matthew Porteus</name>
<affiliation wicri:level="1">
<nlm:affiliation>Deparment of Pediatrics, Stanford University, Stanford, California 94395, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Deparment of Pediatrics, Stanford University, Stanford, California 94395</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Llorente, Bertrand" sort="Llorente, Bertrand" uniqKey="Llorente B" first="Bertrand" last="Llorente">Bertrand Llorente</name>
<affiliation wicri:level="1">
<nlm:affiliation>CRCM, Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM 105; CNRS, UMR7258, Marseille F-13009, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CRCM, Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM 105; CNRS, UMR7258, Marseille F-13009</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Khanna, Kum Kum" sort="Khanna, Kum Kum" uniqKey="Khanna K" first="Kum Kum" last="Khanna">Kum Kum Khanna</name>
<affiliation wicri:level="1">
<nlm:affiliation>Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Burma, Sandeep" sort="Burma, Sandeep" uniqKey="Burma S" first="Sandeep" last="Burma">Sandeep Burma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24705021</idno>
<idno type="pmid">24705021</idno>
<idno type="doi">10.1038/ncomms4561</idno>
<idno type="wicri:Area/PubMed/Corpus">003829</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003829</idno>
<idno type="wicri:Area/PubMed/Curation">003715</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003715</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice.</title>
<author>
<name sortKey="Tomimatsu, Nozomi" sort="Tomimatsu, Nozomi" uniqKey="Tomimatsu N" first="Nozomi" last="Tomimatsu">Nozomi Tomimatsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mukherjee, Bipasha" sort="Mukherjee, Bipasha" uniqKey="Mukherjee B" first="Bipasha" last="Mukherjee">Bipasha Mukherjee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Catherine Hardebeck, Molly" sort="Catherine Hardebeck, Molly" uniqKey="Catherine Hardebeck M" first="Molly" last="Catherine Hardebeck">Molly Catherine Hardebeck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ilcheva, Mariya" sort="Ilcheva, Mariya" uniqKey="Ilcheva M" first="Mariya" last="Ilcheva">Mariya Ilcheva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vanessa Camacho, Cristel" sort="Vanessa Camacho, Cristel" uniqKey="Vanessa Camacho C" first="Cristel" last="Vanessa Camacho">Cristel Vanessa Camacho</name>
<affiliation>
<nlm:affiliation>1] Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA [2].</nlm:affiliation>
<wicri:noCountry code="subField">USA [2]</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Louise Harris, Janelle" sort="Louise Harris, Janelle" uniqKey="Louise Harris J" first="Janelle" last="Louise Harris">Janelle Louise Harris</name>
<affiliation wicri:level="1">
<nlm:affiliation>Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Porteus, Matthew" sort="Porteus, Matthew" uniqKey="Porteus M" first="Matthew" last="Porteus">Matthew Porteus</name>
<affiliation wicri:level="1">
<nlm:affiliation>Deparment of Pediatrics, Stanford University, Stanford, California 94395, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Deparment of Pediatrics, Stanford University, Stanford, California 94395</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Llorente, Bertrand" sort="Llorente, Bertrand" uniqKey="Llorente B" first="Bertrand" last="Llorente">Bertrand Llorente</name>
<affiliation wicri:level="1">
<nlm:affiliation>CRCM, Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM 105; CNRS, UMR7258, Marseille F-13009, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CRCM, Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM 105; CNRS, UMR7258, Marseille F-13009</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Khanna, Kum Kum" sort="Khanna, Kum Kum" uniqKey="Khanna K" first="Kum Kum" last="Khanna">Kum Kum Khanna</name>
<affiliation wicri:level="1">
<nlm:affiliation>Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Burma, Sandeep" sort="Burma, Sandeep" uniqKey="Burma S" first="Sandeep" last="Burma">Sandeep Burma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blotting, Western</term>
<term>Cell Line</term>
<term>Cell Line, Tumor</term>
<term>Cyclin-Dependent Kinase 2 (genetics)</term>
<term>Cyclin-Dependent Kinase 2 (metabolism)</term>
<term>Cyclin-Dependent Kinases (genetics)</term>
<term>Cyclin-Dependent Kinases (metabolism)</term>
<term>DNA Damage (genetics)</term>
<term>DNA Damage (physiology)</term>
<term>DNA Repair (genetics)</term>
<term>DNA Repair (physiology)</term>
<term>DNA Repair Enzymes (metabolism)</term>
<term>Exodeoxyribonucleases (metabolism)</term>
<term>Flow Cytometry</term>
<term>Fluorescent Antibody Technique</term>
<term>Humans</term>
<term>Immunoprecipitation</term>
<term>Phosphorylation (genetics)</term>
<term>Phosphorylation (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Altération de l'ADN (génétique)</term>
<term>Altération de l'ADN (physiologie)</term>
<term>Cytométrie en flux</term>
<term>Enzymes de réparation de l'ADN (métabolisme)</term>
<term>Exodeoxyribonucleases (métabolisme)</term>
<term>Humains</term>
<term>Immunoprécipitation</term>
<term>Kinase-2 cycline-dépendante (génétique)</term>
<term>Kinase-2 cycline-dépendante (métabolisme)</term>
<term>Kinases cyclines-dépendantes (génétique)</term>
<term>Kinases cyclines-dépendantes (métabolisme)</term>
<term>Lignée cellulaire</term>
<term>Lignée cellulaire tumorale</term>
<term>Phosphorylation (génétique)</term>
<term>Phosphorylation (physiologie)</term>
<term>Réparation de l'ADN (génétique)</term>
<term>Réparation de l'ADN (physiologie)</term>
<term>Technique d'immunofluorescence</term>
<term>Technique de Western</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cyclin-Dependent Kinase 2</term>
<term>Cyclin-Dependent Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclin-Dependent Kinase 2</term>
<term>Cyclin-Dependent Kinases</term>
<term>DNA Repair Enzymes</term>
<term>Exodeoxyribonucleases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>DNA Damage</term>
<term>DNA Repair</term>
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Altération de l'ADN</term>
<term>Kinase-2 cycline-dépendante</term>
<term>Kinases cyclines-dépendantes</term>
<term>Phosphorylation</term>
<term>Réparation de l'ADN</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Enzymes de réparation de l'ADN</term>
<term>Exodeoxyribonucleases</term>
<term>Kinase-2 cycline-dépendante</term>
<term>Kinases cyclines-dépendantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Altération de l'ADN</term>
<term>Phosphorylation</term>
<term>Réparation de l'ADN</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>DNA Damage</term>
<term>DNA Repair</term>
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Western</term>
<term>Cell Line</term>
<term>Cell Line, Tumor</term>
<term>Flow Cytometry</term>
<term>Fluorescent Antibody Technique</term>
<term>Humans</term>
<term>Immunoprecipitation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cytométrie en flux</term>
<term>Humains</term>
<term>Immunoprécipitation</term>
<term>Lignée cellulaire</term>
<term>Lignée cellulaire tumorale</term>
<term>Technique d'immunofluorescence</term>
<term>Technique de Western</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Resection of DNA double-strand breaks (DSBs) is a pivotal step during which the choice between NHEJ and HR DNA repair pathways is made. Although CDKs are known to control initiation of resection, their role in regulating long-range resection remains elusive. Here we show that CDKs 1/2 phosphorylate the long-range resection nuclease EXO1 at four C-terminal S/TP sites during S/G2 phases of the cell cycle. Impairment of EXO1 phosphorylation attenuates resection, chromosomal integrity, cell survival and HR, but augments NHEJ upon DNA damage. In contrast, cells expressing phospho-mimic EXO1 are proficient in resection even after CDK inhibition and favour HR over NHEJ. Mutation of cyclin-binding sites on EXO1 attenuates CDK binding and EXO1 phosphorylation, causing a resection defect that can be rescued by phospho-mimic mutations. Mechanistically, phosphorylation of EXO1 augments its recruitment to DNA breaks possibly via interactions with BRCA1. In summary, phosphorylation of EXO1 by CDKs is a novel mechanism regulating repair pathway choice.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24705021</PMID>
<DateCreated>
<Year>2014</Year>
<Month>04</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice.</ArticleTitle>
<Pagination>
<MedlinePgn>3561</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ncomms4561</ELocationID>
<Abstract>
<AbstractText>Resection of DNA double-strand breaks (DSBs) is a pivotal step during which the choice between NHEJ and HR DNA repair pathways is made. Although CDKs are known to control initiation of resection, their role in regulating long-range resection remains elusive. Here we show that CDKs 1/2 phosphorylate the long-range resection nuclease EXO1 at four C-terminal S/TP sites during S/G2 phases of the cell cycle. Impairment of EXO1 phosphorylation attenuates resection, chromosomal integrity, cell survival and HR, but augments NHEJ upon DNA damage. In contrast, cells expressing phospho-mimic EXO1 are proficient in resection even after CDK inhibition and favour HR over NHEJ. Mutation of cyclin-binding sites on EXO1 attenuates CDK binding and EXO1 phosphorylation, causing a resection defect that can be rescued by phospho-mimic mutations. Mechanistically, phosphorylation of EXO1 augments its recruitment to DNA breaks possibly via interactions with BRCA1. In summary, phosphorylation of EXO1 by CDKs is a novel mechanism regulating repair pathway choice.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tomimatsu</LastName>
<ForeName>Nozomi</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mukherjee</LastName>
<ForeName>Bipasha</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Catherine Hardebeck</LastName>
<ForeName>Molly</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ilcheva</LastName>
<ForeName>Mariya</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vanessa Camacho</LastName>
<ForeName>Cristel</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>1] Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA [2].</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Louise Harris</LastName>
<ForeName>Janelle</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Porteus</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Deparment of Pediatrics, Stanford University, Stanford, California 94395, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Llorente</LastName>
<ForeName>Bertrand</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>CRCM, Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM 105; CNRS, UMR7258, Marseille F-13009, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khanna</LastName>
<ForeName>Kum Kum</ForeName>
<Initials>KK</Initials>
<AffiliationInfo>
<Affiliation>Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burma</LastName>
<ForeName>Sandeep</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7, 214E, Dallas, Texas 75390, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA149461</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008203</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 2.7.11.22</RegistryNumber>
<NameOfSubstance UI="D051357">Cyclin-Dependent Kinase 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.22</RegistryNumber>
<NameOfSubstance UI="D018844">Cyclin-Dependent Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="C114331">EXO1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D005090">Exodeoxyribonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.5.1.-</RegistryNumber>
<NameOfSubstance UI="D045643">DNA Repair Enzymes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2011 Apr 15;145(2):212-23</RefSource>
<PMID Version="1">21496642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Jan 19;276(3):1993-7</RefSource>
<PMID Version="1">11067844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteome Res. 2013 Jun 7;12(6):2414-21</RefSource>
<PMID Version="1">23312004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>DNA Repair (Amst). 2011 Jan 2;10(1):73-86</RefSource>
<PMID Version="1">20970388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Mol Cell Biol. 2010 Feb;11(2):138-48</RefSource>
<PMID Version="1">20029420</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>DNA Repair (Amst). 2012 Apr 1;11(4):441-8</RefSource>
<PMID Version="1">22326273</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 May 21;459(7245):460-3</RefSource>
<PMID Version="1">19357644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2011 Feb 15;25(4):350-62</RefSource>
<PMID Version="1">21325134</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2010 Apr 16;141(2):243-54</RefSource>
<PMID Version="1">20362325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2006 Jan 1;20(1):34-46</RefSource>
<PMID Version="1">16391231</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Mol Biol. 2010 Jan;17(1):11-6</RefSource>
<PMID Version="1">20051983</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO Rep. 2010 Dec;11(12):962-8</RefSource>
<PMID Version="1">21052091</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO Rep. 2009 Jun;10(6):629-35</RefSource>
<PMID Version="1">19444312</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Genet. 2006;40:363-83</RefSource>
<PMID Version="1">16895466</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2003 Dec 19;278(51):50956-60</RefSource>
<PMID Version="1">14506259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2004 Nov;24(21):9478-86</RefSource>
<PMID Version="1">15485915</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO Rep. 2012 Jun;13(6):561-8</RefSource>
<PMID Version="1">22565321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Mol Biol. 2011 Sep;18(9):1015-9</RefSource>
<PMID Version="1">21841787</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2013 Mar 7;49(5):840-1</RefSource>
<PMID Version="1">23473603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2013;9(2):e1003277</RefSource>
<PMID Version="1">23468639</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Mol Biol. 2012 Feb;19(2):246-52</RefSource>
<PMID Version="1">22231403</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Genet. 2013 Jun 03;4:99</RefSource>
<PMID Version="1">23760669</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2006 Jul 1;20(13):1721-6</RefSource>
<PMID Version="1">16818604</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2013 Feb 21;49(4):657-67</RefSource>
<PMID Version="1">23273981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neoplasia. 2012 Jan;14(1):34-43</RefSource>
<PMID Version="1">22355272</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2008 Oct 15;22(20):2767-72</RefSource>
<PMID Version="1">18923075</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Mol Biol. 2010 Dec;17(12):1478-85</RefSource>
<PMID Version="1">21102445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2006 Apr 24;173(2):195-206</RefSource>
<PMID Version="1">16618811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2011 Mar 4;41(5):529-42</RefSource>
<PMID Version="1">21362549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>DNA Repair (Amst). 2004 Dec 2;3(12):1549-59</RefSource>
<PMID Version="1">15474417</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Oct 9;455(7214):770-4</RefSource>
<PMID Version="1">18806779</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>DNA Repair (Amst). 2012 Mar 1;11(3):267-77</RefSource>
<PMID Version="1">22222486</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2009 Apr 3;284(14):9558-65</RefSource>
<PMID Version="1">19202191</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Biochem Sci. 2005 Nov;30(11):630-41</RefSource>
<PMID Version="1">16236519</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cancer Ther. 2009 Jul;8(7):1856-66</RefSource>
<PMID Version="1">19509270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 1997 Jan 15;243(1-2):527-36</RefSource>
<PMID Version="1">9030781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2010 Apr;38(6):1821-31</RefSource>
<PMID Version="1">20019063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2008 Feb;36(2):511-9</RefSource>
<PMID Version="1">18048416</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Oct 2;455(7213):689-92</RefSource>
<PMID Version="1">18716619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Genet. 2011;45:247-71</RefSource>
<PMID Version="1">21910633</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Sep 27;489(7417):581-4</RefSource>
<PMID Version="1">22960744</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2006 Feb 20;203(2):297-303</RefSource>
<PMID Version="1">16461339</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2010 Jul 1;70(13):5457-64</RefSource>
<PMID Version="1">20530668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Mar 21;283(12):7713-20</RefSource>
<PMID Version="1">18171670</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2009 Mar 15;69(6):2663-8</RefSource>
<PMID Version="1">19276368</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2008 Sep 19;134(6):981-94</RefSource>
<PMID Version="1">18805091</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051357" MajorTopicYN="N">Cyclin-Dependent Kinase 2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018844" MajorTopicYN="N">Cyclin-Dependent Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004249" MajorTopicYN="N">DNA Damage</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004260" MajorTopicYN="N">DNA Repair</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045643" MajorTopicYN="N">DNA Repair Enzymes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005090" MajorTopicYN="N">Exodeoxyribonucleases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005455" MajorTopicYN="N">Fluorescent Antibody Technique</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS573163</OtherID>
<OtherID Source="NLM">PMC4041212</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>09</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24705021</ArticleId>
<ArticleId IdType="pii">ncomms4561</ArticleId>
<ArticleId IdType="doi">10.1038/ncomms4561</ArticleId>
<ArticleId IdType="pmc">PMC4041212</ArticleId>
<ArticleId IdType="mid">NIHMS573163</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003715 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 003715 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24705021
   |texte=   Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24705021" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024