Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Task dependency of motor adaptations to an acute noxious stimulation.

Identifieur interne : 003636 ( PubMed/Curation ); précédent : 003635; suivant : 003637

Task dependency of motor adaptations to an acute noxious stimulation.

Auteurs : François Hug [Australie] ; Paul W. Hodges [Australie] ; Kylie Tucker [Australie]

Source :

RBID : pubmed:24647431

Descripteurs français

English descriptors

Abstract

This study explored motor adaptations in response to an acute noxious stimulation during three tasks that differed in the number of available degrees of freedom. Fifteen participants performed three isometric force-matched tasks (single leg knee extension, single leg squat, and bilateral leg squat) in three conditions (Control, Pain, and Washout). Pain was induced by injection of hypertonic saline into the vastus medialis muscle (VM; left leg). Supersonic shear imaging was used to measure muscle shear elastic modulus as this is considered to be an index of muscle stress. Surface electromyography (EMG) was recorded bilaterally from six muscles to assess changes in neural strategies. During tasks with fewer degrees of freedom (knee extension and single leg squat task), there was no change in VM EMG amplitude or VM shear elastic modulus. In contrast, during the bilateral leg squat, VM (-32.9 ± 15.8%; P < 0.001) and vastus lateralis (-28.7 ± 14.8%; P < 0.001) EMG amplitude decreased during Pain. This decrease in activation was associated with reduced VM shear elastic modulus (-17.6 ± 23.3%; P = 0.029) and reduced force produced by the painful leg (-10.0 ± 10.2%; P = 0.046). This work provides evidence that when an obvious solution is available to decrease stress on painful tissue, this option is selected. It confirms the fundamental assumption that motor adaptations to pain aim to alter load on painful tissue to protect for further pain and/or injury. The lack of adaptation observed during force-matched tasks with fewer degrees of freedom might be explained by the limited potential to redistribute stress or a high cost induced by such a compensation.

DOI: 10.1152/jn.00911.2013
PubMed: 24647431

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24647431

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Task dependency of motor adaptations to an acute noxious stimulation.</title>
<author>
<name sortKey="Hug, Francois" sort="Hug, Francois" uniqKey="Hug F" first="François" last="Hug">François Hug</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia; University of Nantes, Laboratory "Motricité, Interactions, Performance" (EA 4334), Nantes, France; and f.hug@uq.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia; University of Nantes, Laboratory "Motricité, Interactions, Performance" (EA 4334), Nantes</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hodges, Paul W" sort="Hodges, Paul W" uniqKey="Hodges P" first="Paul W" last="Hodges">Paul W. Hodges</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia;</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tucker, Kylie" sort="Tucker, Kylie" uniqKey="Tucker K" first="Kylie" last="Tucker">Kylie Tucker</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia; University of Queensland, School of Biomedical Sciences, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia; University of Queensland, School of Biomedical Sciences, Brisbane</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24647431</idno>
<idno type="pmid">24647431</idno>
<idno type="doi">10.1152/jn.00911.2013</idno>
<idno type="wicri:Area/PubMed/Corpus">003750</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003750</idno>
<idno type="wicri:Area/PubMed/Curation">003636</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003636</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Task dependency of motor adaptations to an acute noxious stimulation.</title>
<author>
<name sortKey="Hug, Francois" sort="Hug, Francois" uniqKey="Hug F" first="François" last="Hug">François Hug</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia; University of Nantes, Laboratory "Motricité, Interactions, Performance" (EA 4334), Nantes, France; and f.hug@uq.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia; University of Nantes, Laboratory "Motricité, Interactions, Performance" (EA 4334), Nantes</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hodges, Paul W" sort="Hodges, Paul W" uniqKey="Hodges P" first="Paul W" last="Hodges">Paul W. Hodges</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia;</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tucker, Kylie" sort="Tucker, Kylie" uniqKey="Tucker K" first="Kylie" last="Tucker">Kylie Tucker</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia; University of Queensland, School of Biomedical Sciences, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia; University of Queensland, School of Biomedical Sciences, Brisbane</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neurophysiology</title>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Elastic Modulus</term>
<term>Female</term>
<term>Humans</term>
<term>Isometric Contraction</term>
<term>Leg (physiopathology)</term>
<term>Male</term>
<term>Movement</term>
<term>Muscle Contraction</term>
<term>Muscle, Skeletal (diagnostic imaging)</term>
<term>Muscle, Skeletal (physiopathology)</term>
<term>Pain (chemically induced)</term>
<term>Pain (diagnostic imaging)</term>
<term>Pain (physiopathology)</term>
<term>Saline Solution, Hypertonic</term>
<term>Task Performance and Analysis</term>
<term>Ultrasonography</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Analyse et exécution des tâches</term>
<term>Contraction isométrique</term>
<term>Contraction musculaire</term>
<term>Douleur ()</term>
<term>Douleur (imagerie diagnostique)</term>
<term>Douleur (physiopathologie)</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jambe (physiopathologie)</term>
<term>Jeune adulte</term>
<term>Module d'élasticité</term>
<term>Mouvement</term>
<term>Muscles squelettiques (imagerie diagnostique)</term>
<term>Muscles squelettiques (physiopathologie)</term>
<term>Mâle</term>
<term>Solution saline hypertonique</term>
<term>Échographie</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Saline Solution, Hypertonic</term>
</keywords>
<keywords scheme="MESH" qualifier="chemically induced" xml:lang="en">
<term>Pain</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Muscle, Skeletal</term>
<term>Pain</term>
</keywords>
<keywords scheme="MESH" qualifier="imagerie diagnostique" xml:lang="fr">
<term>Douleur</term>
<term>Muscles squelettiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Douleur</term>
<term>Jambe</term>
<term>Muscles squelettiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Leg</term>
<term>Muscle, Skeletal</term>
<term>Pain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Elastic Modulus</term>
<term>Female</term>
<term>Humans</term>
<term>Isometric Contraction</term>
<term>Male</term>
<term>Movement</term>
<term>Muscle Contraction</term>
<term>Task Performance and Analysis</term>
<term>Ultrasonography</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Analyse et exécution des tâches</term>
<term>Contraction isométrique</term>
<term>Contraction musculaire</term>
<term>Douleur</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Module d'élasticité</term>
<term>Mouvement</term>
<term>Mâle</term>
<term>Solution saline hypertonique</term>
<term>Échographie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study explored motor adaptations in response to an acute noxious stimulation during three tasks that differed in the number of available degrees of freedom. Fifteen participants performed three isometric force-matched tasks (single leg knee extension, single leg squat, and bilateral leg squat) in three conditions (Control, Pain, and Washout). Pain was induced by injection of hypertonic saline into the vastus medialis muscle (VM; left leg). Supersonic shear imaging was used to measure muscle shear elastic modulus as this is considered to be an index of muscle stress. Surface electromyography (EMG) was recorded bilaterally from six muscles to assess changes in neural strategies. During tasks with fewer degrees of freedom (knee extension and single leg squat task), there was no change in VM EMG amplitude or VM shear elastic modulus. In contrast, during the bilateral leg squat, VM (-32.9 ± 15.8%; P < 0.001) and vastus lateralis (-28.7 ± 14.8%; P < 0.001) EMG amplitude decreased during Pain. This decrease in activation was associated with reduced VM shear elastic modulus (-17.6 ± 23.3%; P = 0.029) and reduced force produced by the painful leg (-10.0 ± 10.2%; P = 0.046). This work provides evidence that when an obvious solution is available to decrease stress on painful tissue, this option is selected. It confirms the fundamental assumption that motor adaptations to pain aim to alter load on painful tissue to protect for further pain and/or injury. The lack of adaptation observed during force-matched tasks with fewer degrees of freedom might be explained by the limited potential to redistribute stress or a high cost induced by such a compensation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24647431</PMID>
<DateCreated>
<Year>2014</Year>
<Month>06</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>111</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of neurophysiology</Title>
<ISOAbbreviation>J. Neurophysiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Task dependency of motor adaptations to an acute noxious stimulation.</ArticleTitle>
<Pagination>
<MedlinePgn>2298-306</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/jn.00911.2013</ELocationID>
<Abstract>
<AbstractText>This study explored motor adaptations in response to an acute noxious stimulation during three tasks that differed in the number of available degrees of freedom. Fifteen participants performed three isometric force-matched tasks (single leg knee extension, single leg squat, and bilateral leg squat) in three conditions (Control, Pain, and Washout). Pain was induced by injection of hypertonic saline into the vastus medialis muscle (VM; left leg). Supersonic shear imaging was used to measure muscle shear elastic modulus as this is considered to be an index of muscle stress. Surface electromyography (EMG) was recorded bilaterally from six muscles to assess changes in neural strategies. During tasks with fewer degrees of freedom (knee extension and single leg squat task), there was no change in VM EMG amplitude or VM shear elastic modulus. In contrast, during the bilateral leg squat, VM (-32.9 ± 15.8%; P < 0.001) and vastus lateralis (-28.7 ± 14.8%; P < 0.001) EMG amplitude decreased during Pain. This decrease in activation was associated with reduced VM shear elastic modulus (-17.6 ± 23.3%; P = 0.029) and reduced force produced by the painful leg (-10.0 ± 10.2%; P = 0.046). This work provides evidence that when an obvious solution is available to decrease stress on painful tissue, this option is selected. It confirms the fundamental assumption that motor adaptations to pain aim to alter load on painful tissue to protect for further pain and/or injury. The lack of adaptation observed during force-matched tasks with fewer degrees of freedom might be explained by the limited potential to redistribute stress or a high cost induced by such a compensation.</AbstractText>
<CopyrightInformation>Copyright © 2014 the American Physiological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hug</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia; University of Nantes, Laboratory "Motricité, Interactions, Performance" (EA 4334), Nantes, France; and f.hug@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hodges</LastName>
<ForeName>Paul W</ForeName>
<Initials>PW</Initials>
<AffiliationInfo>
<Affiliation>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tucker</LastName>
<ForeName>Kylie</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>University of Queensland, National Health and Medical Research Council, Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia; University of Queensland, School of Biomedical Sciences, Brisbane, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016449">Randomized Controlled Trial</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurophysiol</MedlineTA>
<NlmUniqueID>0375404</NlmUniqueID>
<ISSNLinking>0022-3077</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012462">Saline Solution, Hypertonic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="Y">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055119" MajorTopicYN="N">Elastic Modulus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007537" MajorTopicYN="N">Isometric Contraction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007866" MajorTopicYN="N">Leg</DescriptorName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009068" MajorTopicYN="Y">Movement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009119" MajorTopicYN="Y">Muscle Contraction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018482" MajorTopicYN="N">Muscle, Skeletal</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010146" MajorTopicYN="N">Pain</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012462" MajorTopicYN="N">Saline Solution, Hypertonic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013647" MajorTopicYN="Y">Task Performance and Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014463" MajorTopicYN="N">Ultrasonography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">muscle coordination</Keyword>
<Keyword MajorTopicYN="N">pain</Keyword>
<Keyword MajorTopicYN="N">shear elastic modulus</Keyword>
<Keyword MajorTopicYN="N">supersonic shear imaging</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24647431</ArticleId>
<ArticleId IdType="pii">jn.00911.2013</ArticleId>
<ArticleId IdType="doi">10.1152/jn.00911.2013</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003636 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 003636 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24647431
   |texte=   Task dependency of motor adaptations to an acute noxious stimulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24647431" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024