Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists.

Identifieur interne : 003257 ( PubMed/Curation ); précédent : 003256; suivant : 003258

Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists.

Auteurs : Timothée Poisot [Nouvelle-Zélande] ; James D. Bever ; Peter H. Thrall [Australie] ; Michael E. Hochberg [Allemagne]

Source :

RBID : pubmed:25614798

Abstract

Protective mutualisms, where a symbiont reduces the negative effects of another species on a shared host, represent a common type of species interaction in natural communities, yet it is still unclear what ecological conditions might favor their emergence. Studies suggest that the initial evolution of protective mutualists might involve closely related pathogenic variants with similar life histories, but different competitive abilities and impacts on host fitness. We derive a model to evaluate this hypothesis and show that, in general, a protective variant cannot spread from rarity or exclude a more pathogenic strain. While the conditions allowing mutualist invasion are more likely with increased environmental productivity, they still depend on initial densities in the invaded patch exceeding a threshold, highlighting the likely importance of spatial structure and demographic stochasticity. Using a numerical simulation approach, we show that regional coexistence is in fact possible in an explicitly spatial system and that, under some circumstances, the mutualist population can exclude the enemy. More broadly, the establishment of protective mutualists may be favored when there are other life-history differences from more pathogenic symbionts, such as vertical transmission or additional direct benefits to hosts.

DOI: 10.1002/ece3.1151
PubMed: 25614798

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25614798

Curation

No country items

James D. Bever
<affiliation>
<nlm:affiliation>Department of Biology, Indiana University Bloomington, Indiana, 47405.</nlm:affiliation>
<wicri:noCountry code="subField">47405</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists.</title>
<author>
<name sortKey="Poisot, Timothee" sort="Poisot, Timothee" uniqKey="Poisot T" first="Timothée" last="Poisot">Timothée Poisot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554 Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France ; Département de Biologie, Université du Québec à Rimouski 300 Allée des Ursulines, Rimouski, Quebec, G5L 3A1, Canada ; Québec Centre for Biodiversity Sciences Montréal (QC), Canada ; School of Biological Sciences, University of Canterbury Private Bag, 4800, Christchurch, 8140, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554 Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France ; Département de Biologie, Université du Québec à Rimouski 300 Allée des Ursulines, Rimouski, Quebec, G5L 3A1, Canada ; Québec Centre for Biodiversity Sciences Montréal (QC), Canada ; School of Biological Sciences, University of Canterbury Private Bag, 4800, Christchurch, 8140</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bever, James D" sort="Bever, James D" uniqKey="Bever J" first="James D" last="Bever">James D. Bever</name>
<affiliation>
<nlm:affiliation>Department of Biology, Indiana University Bloomington, Indiana, 47405.</nlm:affiliation>
<wicri:noCountry code="subField">47405</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Plant Industry GPO Box 1600, Canberra, Australian Capital Territory, 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Plant Industry GPO Box 1600, Canberra, Australian Capital Territory, 2601</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hochberg, Michael E" sort="Hochberg, Michael E" uniqKey="Hochberg M" first="Michael E" last="Hochberg">Michael E. Hochberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554 Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France ; Santa Fe Institute Santa Fe, New Mexico, 87501 ; Wissenschaftskolleg zu Berlin Berlin, 14193, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554 Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France ; Santa Fe Institute Santa Fe, New Mexico, 87501 ; Wissenschaftskolleg zu Berlin Berlin, 14193</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25614798</idno>
<idno type="pmid">25614798</idno>
<idno type="doi">10.1002/ece3.1151</idno>
<idno type="wicri:Area/PubMed/Corpus">003368</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003368</idno>
<idno type="wicri:Area/PubMed/Curation">003257</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003257</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists.</title>
<author>
<name sortKey="Poisot, Timothee" sort="Poisot, Timothee" uniqKey="Poisot T" first="Timothée" last="Poisot">Timothée Poisot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554 Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France ; Département de Biologie, Université du Québec à Rimouski 300 Allée des Ursulines, Rimouski, Quebec, G5L 3A1, Canada ; Québec Centre for Biodiversity Sciences Montréal (QC), Canada ; School of Biological Sciences, University of Canterbury Private Bag, 4800, Christchurch, 8140, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554 Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France ; Département de Biologie, Université du Québec à Rimouski 300 Allée des Ursulines, Rimouski, Quebec, G5L 3A1, Canada ; Québec Centre for Biodiversity Sciences Montréal (QC), Canada ; School of Biological Sciences, University of Canterbury Private Bag, 4800, Christchurch, 8140</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bever, James D" sort="Bever, James D" uniqKey="Bever J" first="James D" last="Bever">James D. Bever</name>
<affiliation>
<nlm:affiliation>Department of Biology, Indiana University Bloomington, Indiana, 47405.</nlm:affiliation>
<wicri:noCountry code="subField">47405</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Plant Industry GPO Box 1600, Canberra, Australian Capital Territory, 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Plant Industry GPO Box 1600, Canberra, Australian Capital Territory, 2601</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hochberg, Michael E" sort="Hochberg, Michael E" uniqKey="Hochberg M" first="Michael E" last="Hochberg">Michael E. Hochberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554 Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France ; Santa Fe Institute Santa Fe, New Mexico, 87501 ; Wissenschaftskolleg zu Berlin Berlin, 14193, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554 Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France ; Santa Fe Institute Santa Fe, New Mexico, 87501 ; Wissenschaftskolleg zu Berlin Berlin, 14193</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="ISSN">2045-7758</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Protective mutualisms, where a symbiont reduces the negative effects of another species on a shared host, represent a common type of species interaction in natural communities, yet it is still unclear what ecological conditions might favor their emergence. Studies suggest that the initial evolution of protective mutualists might involve closely related pathogenic variants with similar life histories, but different competitive abilities and impacts on host fitness. We derive a model to evaluate this hypothesis and show that, in general, a protective variant cannot spread from rarity or exclude a more pathogenic strain. While the conditions allowing mutualist invasion are more likely with increased environmental productivity, they still depend on initial densities in the invaded patch exceeding a threshold, highlighting the likely importance of spatial structure and demographic stochasticity. Using a numerical simulation approach, we show that regional coexistence is in fact possible in an explicitly spatial system and that, under some circumstances, the mutualist population can exclude the enemy. More broadly, the establishment of protective mutualists may be favored when there are other life-history differences from more pathogenic symbionts, such as vertical transmission or additional direct benefits to hosts.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25614798</PMID>
<DateCreated>
<Year>2015</Year>
<Month>01</Month>
<Day>23</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">2045-7758</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists.</ArticleTitle>
<Pagination>
<MedlinePgn>3841-50</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.1151</ELocationID>
<Abstract>
<AbstractText>Protective mutualisms, where a symbiont reduces the negative effects of another species on a shared host, represent a common type of species interaction in natural communities, yet it is still unclear what ecological conditions might favor their emergence. Studies suggest that the initial evolution of protective mutualists might involve closely related pathogenic variants with similar life histories, but different competitive abilities and impacts on host fitness. We derive a model to evaluate this hypothesis and show that, in general, a protective variant cannot spread from rarity or exclude a more pathogenic strain. While the conditions allowing mutualist invasion are more likely with increased environmental productivity, they still depend on initial densities in the invaded patch exceeding a threshold, highlighting the likely importance of spatial structure and demographic stochasticity. Using a numerical simulation approach, we show that regional coexistence is in fact possible in an explicitly spatial system and that, under some circumstances, the mutualist population can exclude the enemy. More broadly, the establishment of protective mutualists may be favored when there are other life-history differences from more pathogenic symbionts, such as vertical transmission or additional direct benefits to hosts.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Poisot</LastName>
<ForeName>Timothée</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554 Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France ; Département de Biologie, Université du Québec à Rimouski 300 Allée des Ursulines, Rimouski, Quebec, G5L 3A1, Canada ; Québec Centre for Biodiversity Sciences Montréal (QC), Canada ; School of Biological Sciences, University of Canterbury Private Bag, 4800, Christchurch, 8140, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bever</LastName>
<ForeName>James D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Indiana University Bloomington, Indiana, 47405.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thrall</LastName>
<ForeName>Peter H</ForeName>
<Initials>PH</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Plant Industry GPO Box 1600, Canberra, Australian Capital Territory, 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hochberg</LastName>
<ForeName>Michael E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554 Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France ; Santa Fe Institute Santa Fe, New Mexico, 87501 ; Wissenschaftskolleg zu Berlin Berlin, 14193, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12465-70</RefSource>
<PMID Version="1">16116093</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2008 Jul;21(4):1133-43</RefSource>
<PMID Version="1">18422532</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8627-33</RefSource>
<PMID Version="1">17494762</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Biol. 2006 Jul 07;4:21</RefSource>
<PMID Version="1">16827933</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Ecol. 2011 Sep;80(5):1097-108</RefSource>
<PMID Version="1">21561452</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2010 Oct 12;20(19):1768-72</RefSource>
<PMID Version="1">20817530</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2009 Dec;174(6):780-94</RefSource>
<PMID Version="1">19845459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Oct 3;322(5898):63</RefSource>
<PMID Version="1">18832638</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2007 Apr;64(2):260-8</RefSource>
<PMID Version="1">17493120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1999 Sep 10;285(5434):1742-5</RefSource>
<PMID Version="1">10481011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2003 Oct;162(4 Suppl):S24-39</RefSource>
<PMID Version="1">14583855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 2006 Oct;21(10):585-92</RefSource>
<PMID Version="1">16828927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2010 Sep 22;277(1695):2765-74</RefSource>
<PMID Version="1">20427340</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 1975;266:173-94</RefSource>
<PMID Version="1">829470</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1972 Jun 9;176(4039):1122-3</RefSource>
<PMID Version="1">5035468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 1999 Feb;14(2):49-53</RefSource>
<PMID Version="1">10234251</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2003 Aug;162(2):195-204</RefSource>
<PMID Version="1">12858264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecology. 2006 Jan;87(1):103-12</RefSource>
<PMID Version="1">16634301</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 2000 Aug;15(8):321-326</RefSource>
<PMID Version="1">10884696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 2007 Mar;22(3):120-6</RefSource>
<PMID Version="1">17137675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oecologia. 2005 Mar;143(1):61-9</RefSource>
<PMID Version="1">15583942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 1997 Jul 22;264(1384):985-91</RefSource>
<PMID Version="1">9263465</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2012 Jun;66(6):1953-65</RefSource>
<PMID Version="1">22671559</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Lett. 2011 Nov;14(11):1149-57</RefSource>
<PMID Version="1">21951910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11211-6</RefSource>
<PMID Version="1">16844774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 1998 Aug;152(2):298-302</RefSource>
<PMID Version="1">18811393</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Theor Biol. 1998 Aug 7;193(3):485-495</RefSource>
<PMID Version="1">9735275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Infect Immun. 1999 Apr;67(4):1992-2000</RefSource>
<PMID Version="1">10085047</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecology. 2009 Sep;90(9):2384-92</RefSource>
<PMID Version="1">19769117</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Parasitol. 2010 Oct;26(10):492-8</RefSource>
<PMID Version="1">20561821</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2006;172(3):412-28</RefSource>
<PMID Version="1">17083673</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2003 Oct;162(4 Suppl):S63-79</RefSource>
<PMID Version="1">14583858</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oecologia. 2009 Jul;160(4):771-9</RefSource>
<PMID Version="1">19408016</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 2010 Jan;25(1):21-7</RefSource>
<PMID Version="1">19782425</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Popul Biol. 1999 Jun;55(3):309-23</RefSource>
<PMID Version="1">10366555</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4301050</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Community ecology</Keyword>
<Keyword MajorTopicYN="N">coexistence theory</Keyword>
<Keyword MajorTopicYN="N">host-symbiont interactions</Keyword>
<Keyword MajorTopicYN="N">metacommunities</Keyword>
<Keyword MajorTopicYN="N">source-sink dynamics</Keyword>
<Keyword MajorTopicYN="N">spatial dynamics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25614798</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.1151</ArticleId>
<ArticleId IdType="pmc">PMC4301050</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003257 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 003257 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25614798
   |texte=   Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25614798" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024