Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A novel conserved mechanism for plant NLR protein pairs: the "integrated decoy" hypothesis.

Identifieur interne : 003208 ( PubMed/Curation ); précédent : 003207; suivant : 003209

A novel conserved mechanism for plant NLR protein pairs: the "integrated decoy" hypothesis.

Auteurs : Stella Cesari [Australie] ; Maud Bernoux [Australie] ; Philippe Moncuquet [Australie] ; Thomas Kroj [France] ; Peter N. Dodds [Australie]

Source :

RBID : pubmed:25506347

Abstract

Plant immunity is often triggered by the specific recognition of pathogen effectors by intracellular nucleotide-binding, leucine-rich repeat receptors (NLR). Plant NLRs contain an N-terminal signaling domain that is mostly represented by either a Toll-interleukin1 receptor (TIR) domain or a coiled coil (CC) domain. In many cases, single NLR proteins are sufficient for both effector recognition and signaling activation. However, many paired NLRs have now been identified where both proteins are required to confer resistance to pathogens. Recent detailed studies on the Arabidopsis thaliana TIR-NLR pair RRS1 and RPS4 and on the rice CC-NLR pair RGA4 and RGA5 have revealed for the first time how such protein pairs function together. In both cases, the paired partners interact physically to form a hetero-complex receptor in which each partner plays distinct roles in effector recognition or signaling activation, highlighting a conserved mode of action of NLR pairs across both monocotyledonous and dicotyledonous plants. We also describe an "integrated decoy" model for the function of these receptor complexes. In this model, a plant protein targeted by an effector has been duplicated and fused to one member of the NLR pair, where it acts as a bait to trigger defense signaling by the second NLR upon effector binding. This mechanism may be common to many other plant NLR pairs.

DOI: 10.3389/fpls.2014.00606
PubMed: 25506347

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25506347

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A novel conserved mechanism for plant NLR protein pairs: the "integrated decoy" hypothesis.</title>
<author>
<name sortKey="Cesari, Stella" sort="Cesari, Stella" uniqKey="Cesari S" first="Stella" last="Cesari">Stella Cesari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut National de la Recherche Agronomique, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Institut National de la Recherche Agronomique, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bernoux, Maud" sort="Bernoux, Maud" uniqKey="Bernoux M" first="Maud" last="Bernoux">Maud Bernoux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moncuquet, Philippe" sort="Moncuquet, Philippe" uniqKey="Moncuquet P" first="Philippe" last="Moncuquet">Philippe Moncuquet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organisation, Digital Productivity and Service Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organisation, Digital Productivity and Service Canberra, ACT</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kroj, Thomas" sort="Kroj, Thomas" uniqKey="Kroj T" first="Thomas" last="Kroj">Thomas Kroj</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut National de la Recherche Agronomique, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut National de la Recherche Agronomique, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25506347</idno>
<idno type="pmid">25506347</idno>
<idno type="doi">10.3389/fpls.2014.00606</idno>
<idno type="wicri:Area/PubMed/Corpus">003318</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003318</idno>
<idno type="wicri:Area/PubMed/Curation">003208</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003208</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A novel conserved mechanism for plant NLR protein pairs: the "integrated decoy" hypothesis.</title>
<author>
<name sortKey="Cesari, Stella" sort="Cesari, Stella" uniqKey="Cesari S" first="Stella" last="Cesari">Stella Cesari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut National de la Recherche Agronomique, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Institut National de la Recherche Agronomique, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bernoux, Maud" sort="Bernoux, Maud" uniqKey="Bernoux M" first="Maud" last="Bernoux">Maud Bernoux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moncuquet, Philippe" sort="Moncuquet, Philippe" uniqKey="Moncuquet P" first="Philippe" last="Moncuquet">Philippe Moncuquet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organisation, Digital Productivity and Service Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organisation, Digital Productivity and Service Canberra, ACT</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kroj, Thomas" sort="Kroj, Thomas" uniqKey="Kroj T" first="Thomas" last="Kroj">Thomas Kroj</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut National de la Recherche Agronomique, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut National de la Recherche Agronomique, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant immunity is often triggered by the specific recognition of pathogen effectors by intracellular nucleotide-binding, leucine-rich repeat receptors (NLR). Plant NLRs contain an N-terminal signaling domain that is mostly represented by either a Toll-interleukin1 receptor (TIR) domain or a coiled coil (CC) domain. In many cases, single NLR proteins are sufficient for both effector recognition and signaling activation. However, many paired NLRs have now been identified where both proteins are required to confer resistance to pathogens. Recent detailed studies on the Arabidopsis thaliana TIR-NLR pair RRS1 and RPS4 and on the rice CC-NLR pair RGA4 and RGA5 have revealed for the first time how such protein pairs function together. In both cases, the paired partners interact physically to form a hetero-complex receptor in which each partner plays distinct roles in effector recognition or signaling activation, highlighting a conserved mode of action of NLR pairs across both monocotyledonous and dicotyledonous plants. We also describe an "integrated decoy" model for the function of these receptor complexes. In this model, a plant protein targeted by an effector has been duplicated and fused to one member of the NLR pair, where it acts as a bait to trigger defense signaling by the second NLR upon effector binding. This mechanism may be common to many other plant NLR pairs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25506347</PMID>
<DateCreated>
<Year>2014</Year>
<Month>12</Month>
<Day>16</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>A novel conserved mechanism for plant NLR protein pairs: the "integrated decoy" hypothesis.</ArticleTitle>
<Pagination>
<MedlinePgn>606</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2014.00606</ELocationID>
<Abstract>
<AbstractText>Plant immunity is often triggered by the specific recognition of pathogen effectors by intracellular nucleotide-binding, leucine-rich repeat receptors (NLR). Plant NLRs contain an N-terminal signaling domain that is mostly represented by either a Toll-interleukin1 receptor (TIR) domain or a coiled coil (CC) domain. In many cases, single NLR proteins are sufficient for both effector recognition and signaling activation. However, many paired NLRs have now been identified where both proteins are required to confer resistance to pathogens. Recent detailed studies on the Arabidopsis thaliana TIR-NLR pair RRS1 and RPS4 and on the rice CC-NLR pair RGA4 and RGA5 have revealed for the first time how such protein pairs function together. In both cases, the paired partners interact physically to form a hetero-complex receptor in which each partner plays distinct roles in effector recognition or signaling activation, highlighting a conserved mode of action of NLR pairs across both monocotyledonous and dicotyledonous plants. We also describe an "integrated decoy" model for the function of these receptor complexes. In this model, a plant protein targeted by an effector has been duplicated and fused to one member of the NLR pair, where it acts as a bait to trigger defense signaling by the second NLR upon effector binding. This mechanism may be common to many other plant NLR pairs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cesari</LastName>
<ForeName>Stella</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institut National de la Recherche Agronomique, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bernoux</LastName>
<ForeName>Maud</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moncuquet</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organisation, Digital Productivity and Service Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kroj</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Institut National de la Recherche Agronomique, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixtes de Recherche Biology and Genetics of Plant-Pathogen Interactions Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
<AffiliationInfo>
<Affiliation>Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):8024-9</RefSource>
<PMID Version="1">12788974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1994 Sep 23;78(6):1089-99</RefSource>
<PMID Version="1">7923358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 1999 Nov;20(3):317-32</RefSource>
<PMID Version="1">10571892</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3076-80</RefSource>
<PMID Version="1">20133635</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2014 Apr 10;54(1):17-29</RefSource>
<PMID Version="1">24657167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2006 May;61(1-2):31-45</RefSource>
<PMID Version="1">16786290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2404-9</RefSource>
<PMID Version="1">11842188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2011 May;66(3):467-79</RefSource>
<PMID Version="1">21251109</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2006 Jun;7(6):576-82</RefSource>
<PMID Version="1">16648852</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2012 Aug;15(4):375-84</RefSource>
<PMID Version="1">22658703</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Immunol. 2013;31:73-106</RefSource>
<PMID Version="1">23215645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14970-5</RefSource>
<PMID Version="1">18812501</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Aug 21;325(5943):998-1001</RefSource>
<PMID Version="1">19696351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2010 Jul;22(7):2444-58</RefSource>
<PMID Version="1">20601497</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014 Jun 04;9(6):e98067</RefSource>
<PMID Version="1">24896089</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Host Microbe. 2011 Mar 17;9(3):200-11</RefSource>
<PMID Version="1">21402359</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2006 Jun;7(6):569-75</RefSource>
<PMID Version="1">16648853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2010 Nov 18;6(11):e1001202</RefSource>
<PMID Version="1">21124938</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Integr Plant Biol. 2013 Dec;55(12):1188-97</RefSource>
<PMID Version="1">23710768</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2011 Oct;14(5):512-8</RefSource>
<PMID Version="1">21723182</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Evol. 2000 Mar;50(3):203-13</RefSource>
<PMID Version="1">10754062</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Immunol. 2013 Oct 21;4:348</RefSource>
<PMID Version="1">24155748</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2010 Aug;13(4):472-7</RefSource>
<PMID Version="1">20483655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 1999 Nov;20(3):265-77</RefSource>
<PMID Version="1">10571887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2013;9(4):e1003465</RefSource>
<PMID Version="1">23633962</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2013 Apr;25(4):1463-81</RefSource>
<PMID Version="1">23548743</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2008 Dec;180(4):2267-76</RefSource>
<PMID Version="1">18940787</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Aug 28;477(7366):592-5</RefSource>
<PMID Version="1">21874021</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Nov 16;444(7117):323-9</RefSource>
<PMID Version="1">17108957</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2008 Aug;20(8):2009-17</RefSource>
<PMID Version="1">18723576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2001 Jun 14;411(6839):826-33</RefSource>
<PMID Version="1">11459065</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2010 Jan;23(1):49-57</RefSource>
<PMID Version="1">19958138</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2010 Aug;11(8):539-48</RefSource>
<PMID Version="1">20585331</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2001 Mar;125(3):1304-13</RefSource>
<PMID Version="1">11244111</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2013 Aug 16;341(6147):786-8</RefSource>
<PMID Version="1">23811228</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2011 Aug;24(8):897-906</RefSource>
<PMID Version="1">21539434</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2009 Dec;60(6):1043-54</RefSource>
<PMID Version="1">19769576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Nov 17;281(46):35217-23</RefSource>
<PMID Version="1">16984919</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2012 Aug;15(4):349-57</RefSource>
<PMID Version="1">22705024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2011 Mar;122(5):1017-28</RefSource>
<PMID Version="1">21153625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2009 Feb;7(2):99-109</RefSource>
<PMID Version="1">19148178</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Immunol. 2013 Sep 25;4:297</RefSource>
<PMID Version="1">24093022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93</RefSource>
<PMID Version="1">16731621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2007 Sep;5(9):e236</RefSource>
<PMID Version="1">17803357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2014 Apr 18;344(6181):299-303</RefSource>
<PMID Version="1">24744375</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Infect Immun. 2011 Apr;79(4):1606-14</RefSource>
<PMID Version="1">21282416</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mamm Genome. 1995 Aug;6(8):540-5</RefSource>
<PMID Version="1">8589525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2014 Sep 1;33(17):1941-59</RefSource>
<PMID Version="1">25024433</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Nov 9;287(46):38460-72</RefSource>
<PMID Version="1">23012363</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2009 Nov;60(4):602-13</RefSource>
<PMID Version="1">19686535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2009 Apr;181(4):1627-38</RefSource>
<PMID Version="1">19153255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Funct Integr Genomics. 2008 Aug;8(3):199-209</RefSource>
<PMID Version="1">18414912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1994 Sep 23;265(5180):1856-60</RefSource>
<PMID Version="1">8091210</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2009 Aug;150(4):1648-55</RefSource>
<PMID Version="1">19420325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2012 Dec;72(6):894-907</RefSource>
<PMID Version="1">22805093</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genomics. 1995 Apr 10;26(3):443-50</RefSource>
<PMID Version="1">7607666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant. 2013 Jan;6(1):235-8</RefSource>
<PMID Version="1">23100482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2004 Jun;38(6):898-909</RefSource>
<PMID Version="1">15165183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2012 Nov;17(11):644-55</RefSource>
<PMID Version="1">22796464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2013 Apr;26(4):407-18</RefSource>
<PMID Version="1">23216085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2007 Apr;50(1):14-28</RefSource>
<PMID Version="1">17346268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Sep 14;477(7366):596-600</RefSource>
<PMID Version="1">21918512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2009 Oct;60(2):218-26</RefSource>
<PMID Version="1">19519800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2008 Oct;9(10):1171-8</RefSource>
<PMID Version="1">18724372</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Host Microbe. 2011 Mar 17;9(3):187-99</RefSource>
<PMID Version="1">21402358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1994 Sep 23;78(6):1101-15</RefSource>
<PMID Version="1">7923359</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4246468</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arabidopsis thaliana</Keyword>
<Keyword MajorTopicYN="N">NLR protein pairs</Keyword>
<Keyword MajorTopicYN="N">integrated decoy</Keyword>
<Keyword MajorTopicYN="N">pathogen recognition</Keyword>
<Keyword MajorTopicYN="N">plant immunity</Keyword>
<Keyword MajorTopicYN="N">rice</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25506347</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2014.00606</ArticleId>
<ArticleId IdType="pmc">PMC4246468</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003208 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 003208 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25506347
   |texte=   A novel conserved mechanism for plant NLR protein pairs: the "integrated decoy" hypothesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25506347" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024