Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optically addressable nuclear spins in a solid with a six-hour coherence time.

Identifieur interne : 003020 ( PubMed/Curation ); précédent : 003019; suivant : 003021

Optically addressable nuclear spins in a solid with a six-hour coherence time.

Auteurs : Manjin Zhong [Australie] ; Morgan P. Hedges [États-Unis] ; Rose L. Ahlefeldt [France] ; John G. Bartholomew [Australie] ; Sarah E. Beavan [Allemagne] ; Sven M. Wittig [Allemagne] ; Jevon J. Longdell [Nouvelle-Zélande] ; Matthew J. Sellars [Australie]

Source :

RBID : pubmed:25567283

Abstract

Space-like separation of entangled quantum states is a central concept in fundamental investigations of quantum mechanics and in quantum communication applications. Optical approaches are ubiquitous in the distribution of entanglement because entangled photons are easy to generate and transmit. However, extending this direct distribution beyond a range of a few hundred kilometres to a worldwide network is prohibited by losses associated with scattering, diffraction and absorption during transmission. A proposal to overcome this range limitation is the quantum repeater protocol, which involves the distribution of entangled pairs of optical modes among many quantum memories stationed along the transmission channel. To be effective, the memories must store the quantum information encoded on the optical modes for times that are long compared to the direct optical transmission time of the channel. Here we measure a decoherence rate of 8 × 10(-5) per second over 100 milliseconds, which is the time required for light transmission on a global scale. The measurements were performed on a ground-state hyperfine transition of europium ion dopants in yttrium orthosilicate ((151)Eu(3+):Y2SiO5) using optically detected nuclear magnetic resonance techniques. The observed decoherence rate is at least an order of magnitude lower than that of any other system suitable for an optical quantum memory. Furthermore, by employing dynamic decoupling, a coherence time of 370 ± 60 minutes was achieved at 2 kelvin. It has been almost universally assumed that light is the best long-distance carrier for quantum information. However, the coherence time observed here is long enough that nuclear spins travelling at 9 kilometres per hour in a crystal would have a lower decoherence with distance than light in an optical fibre. This enables some very early approaches to entanglement distribution to be revisited, in particular those in which the spins are transported rather than the light.

DOI: 10.1038/nature14025
PubMed: 25567283

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25567283

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optically addressable nuclear spins in a solid with a six-hour coherence time.</title>
<author>
<name sortKey="Zhong, Manjin" sort="Zhong, Manjin" uniqKey="Zhong M" first="Manjin" last="Zhong">Manjin Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hedges, Morgan P" sort="Hedges, Morgan P" uniqKey="Hedges M" first="Morgan P" last="Hedges">Morgan P. Hedges</name>
<affiliation wicri:level="1">
<nlm:affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Department of Physics, Princeton University, Princeton, New Jersey 08554, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Department of Physics, Princeton University, Princeton, New Jersey 08554</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ahlefeldt, Rose L" sort="Ahlefeldt, Rose L" uniqKey="Ahlefeldt R" first="Rose L" last="Ahlefeldt">Rose L. Ahlefeldt</name>
<affiliation wicri:level="1">
<nlm:affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Laboratoire Aimé Cotton, CNRS-UPR 3321, Université Paris-Sud and ENS Cachan, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Laboratoire Aimé Cotton, CNRS-UPR 3321, Université Paris-Sud and ENS Cachan, 91405 Orsay</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bartholomew, John G" sort="Bartholomew, John G" uniqKey="Bartholomew J" first="John G" last="Bartholomew">John G. Bartholomew</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Beavan, Sarah E" sort="Beavan, Sarah E" uniqKey="Beavan S" first="Sarah E" last="Beavan">Sarah E. Beavan</name>
<affiliation wicri:level="1">
<nlm:affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 Munich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wittig, Sven M" sort="Wittig, Sven M" uniqKey="Wittig S" first="Sven M" last="Wittig">Sven M. Wittig</name>
<affiliation wicri:level="1">
<nlm:affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Kayser-Threde GmbH, Wolfratshauser straße 48, 81379 Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Kayser-Threde GmbH, Wolfratshauser straße 48, 81379 Munich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Longdell, Jevon J" sort="Longdell, Jevon J" uniqKey="Longdell J" first="Jevon J" last="Longdell">Jevon J. Longdell</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Dodd-Walls Centre for Photonic and Quantum Technologies, and Department of Physics, University of Otago, 730 Cumberland Street, Dunedin 9016, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>The Dodd-Walls Centre for Photonic and Quantum Technologies, and Department of Physics, University of Otago, 730 Cumberland Street, Dunedin 9016</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sellars, Matthew J" sort="Sellars, Matthew J" uniqKey="Sellars M" first="Matthew J" last="Sellars">Matthew J. Sellars</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25567283</idno>
<idno type="pmid">25567283</idno>
<idno type="doi">10.1038/nature14025</idno>
<idno type="wicri:Area/PubMed/Corpus">003116</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003116</idno>
<idno type="wicri:Area/PubMed/Curation">003020</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003020</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Optically addressable nuclear spins in a solid with a six-hour coherence time.</title>
<author>
<name sortKey="Zhong, Manjin" sort="Zhong, Manjin" uniqKey="Zhong M" first="Manjin" last="Zhong">Manjin Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hedges, Morgan P" sort="Hedges, Morgan P" uniqKey="Hedges M" first="Morgan P" last="Hedges">Morgan P. Hedges</name>
<affiliation wicri:level="1">
<nlm:affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Department of Physics, Princeton University, Princeton, New Jersey 08554, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Department of Physics, Princeton University, Princeton, New Jersey 08554</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ahlefeldt, Rose L" sort="Ahlefeldt, Rose L" uniqKey="Ahlefeldt R" first="Rose L" last="Ahlefeldt">Rose L. Ahlefeldt</name>
<affiliation wicri:level="1">
<nlm:affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Laboratoire Aimé Cotton, CNRS-UPR 3321, Université Paris-Sud and ENS Cachan, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Laboratoire Aimé Cotton, CNRS-UPR 3321, Université Paris-Sud and ENS Cachan, 91405 Orsay</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bartholomew, John G" sort="Bartholomew, John G" uniqKey="Bartholomew J" first="John G" last="Bartholomew">John G. Bartholomew</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Beavan, Sarah E" sort="Beavan, Sarah E" uniqKey="Beavan S" first="Sarah E" last="Beavan">Sarah E. Beavan</name>
<affiliation wicri:level="1">
<nlm:affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 Munich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wittig, Sven M" sort="Wittig, Sven M" uniqKey="Wittig S" first="Sven M" last="Wittig">Sven M. Wittig</name>
<affiliation wicri:level="1">
<nlm:affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Kayser-Threde GmbH, Wolfratshauser straße 48, 81379 Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Kayser-Threde GmbH, Wolfratshauser straße 48, 81379 Munich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Longdell, Jevon J" sort="Longdell, Jevon J" uniqKey="Longdell J" first="Jevon J" last="Longdell">Jevon J. Longdell</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Dodd-Walls Centre for Photonic and Quantum Technologies, and Department of Physics, University of Otago, 730 Cumberland Street, Dunedin 9016, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>The Dodd-Walls Centre for Photonic and Quantum Technologies, and Department of Physics, University of Otago, 730 Cumberland Street, Dunedin 9016</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sellars, Matthew J" sort="Sellars, Matthew J" uniqKey="Sellars M" first="Matthew J" last="Sellars">Matthew J. Sellars</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature</title>
<idno type="eISSN">1476-4687</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Space-like separation of entangled quantum states is a central concept in fundamental investigations of quantum mechanics and in quantum communication applications. Optical approaches are ubiquitous in the distribution of entanglement because entangled photons are easy to generate and transmit. However, extending this direct distribution beyond a range of a few hundred kilometres to a worldwide network is prohibited by losses associated with scattering, diffraction and absorption during transmission. A proposal to overcome this range limitation is the quantum repeater protocol, which involves the distribution of entangled pairs of optical modes among many quantum memories stationed along the transmission channel. To be effective, the memories must store the quantum information encoded on the optical modes for times that are long compared to the direct optical transmission time of the channel. Here we measure a decoherence rate of 8 × 10(-5) per second over 100 milliseconds, which is the time required for light transmission on a global scale. The measurements were performed on a ground-state hyperfine transition of europium ion dopants in yttrium orthosilicate ((151)Eu(3+):Y2SiO5) using optically detected nuclear magnetic resonance techniques. The observed decoherence rate is at least an order of magnitude lower than that of any other system suitable for an optical quantum memory. Furthermore, by employing dynamic decoupling, a coherence time of 370 ± 60 minutes was achieved at 2 kelvin. It has been almost universally assumed that light is the best long-distance carrier for quantum information. However, the coherence time observed here is long enough that nuclear spins travelling at 9 kilometres per hour in a crystal would have a lower decoherence with distance than light in an optical fibre. This enables some very early approaches to entanglement distribution to be revisited, in particular those in which the spins are transported rather than the light.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25567283</PMID>
<DateCreated>
<Year>2015</Year>
<Month>01</Month>
<Day>08</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1476-4687</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>517</Volume>
<Issue>7533</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Nature</Title>
<ISOAbbreviation>Nature</ISOAbbreviation>
</Journal>
<ArticleTitle>Optically addressable nuclear spins in a solid with a six-hour coherence time.</ArticleTitle>
<Pagination>
<MedlinePgn>177-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nature14025</ELocationID>
<Abstract>
<AbstractText>Space-like separation of entangled quantum states is a central concept in fundamental investigations of quantum mechanics and in quantum communication applications. Optical approaches are ubiquitous in the distribution of entanglement because entangled photons are easy to generate and transmit. However, extending this direct distribution beyond a range of a few hundred kilometres to a worldwide network is prohibited by losses associated with scattering, diffraction and absorption during transmission. A proposal to overcome this range limitation is the quantum repeater protocol, which involves the distribution of entangled pairs of optical modes among many quantum memories stationed along the transmission channel. To be effective, the memories must store the quantum information encoded on the optical modes for times that are long compared to the direct optical transmission time of the channel. Here we measure a decoherence rate of 8 × 10(-5) per second over 100 milliseconds, which is the time required for light transmission on a global scale. The measurements were performed on a ground-state hyperfine transition of europium ion dopants in yttrium orthosilicate ((151)Eu(3+):Y2SiO5) using optically detected nuclear magnetic resonance techniques. The observed decoherence rate is at least an order of magnitude lower than that of any other system suitable for an optical quantum memory. Furthermore, by employing dynamic decoupling, a coherence time of 370 ± 60 minutes was achieved at 2 kelvin. It has been almost universally assumed that light is the best long-distance carrier for quantum information. However, the coherence time observed here is long enough that nuclear spins travelling at 9 kilometres per hour in a crystal would have a lower decoherence with distance than light in an optical fibre. This enables some very early approaches to entanglement distribution to be revisited, in particular those in which the spins are transported rather than the light.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Manjin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hedges</LastName>
<ForeName>Morgan P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Department of Physics, Princeton University, Princeton, New Jersey 08554, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ahlefeldt</LastName>
<ForeName>Rose L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Laboratoire Aimé Cotton, CNRS-UPR 3321, Université Paris-Sud and ENS Cachan, 91405 Orsay, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bartholomew</LastName>
<ForeName>John G</ForeName>
<Initials>JG</Initials>
<AffiliationInfo>
<Affiliation>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beavan</LastName>
<ForeName>Sarah E</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wittig</LastName>
<ForeName>Sven M</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>1] Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia [2] Kayser-Threde GmbH, Wolfratshauser straße 48, 81379 Munich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Longdell</LastName>
<ForeName>Jevon J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>The Dodd-Walls Centre for Photonic and Quantum Technologies, and Department of Physics, University of Otago, 730 Cumberland Street, Dunedin 9016, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sellars</LastName>
<ForeName>Matthew J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Centre for Quantum Computation and Communication Technology, Laser Physics Centre, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nature</MedlineTA>
<NlmUniqueID>0410462</NlmUniqueID>
<ISSNLinking>0028-0836</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nature. 2015 Jan 8;517(7533):153-4</RefSource>
<PMID Version="1">25567278</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2009 Jul 6;17(14):11440-9</RefSource>
<PMID Version="1">19582059</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Lett. 1991 Dec 1;16(23):1884-6</RefSource>
<PMID Version="1">19784171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Aug 9;488(7410):185-8</RefSource>
<PMID Version="1">22874963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2005 Aug 5;95(6):063601</RefSource>
<PMID Version="1">16090952</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2011 Jun 17;106(24):240501</RefSource>
<PMID Version="1">21770554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2005 Jul 15;95(3):030506</RefSource>
<PMID Version="1">16090731</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2013 Jul 19;111(3):033601</RefSource>
<PMID Version="1">23909316</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Jan 27;469(7331):512-5</RefSource>
<PMID Version="1">21228775</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2005 Aug 5;95(6):060502</RefSource>
<PMID Version="1">16090932</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2001 Nov 22;414(6862):413-8</RefSource>
<PMID Version="1">11719796</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Jan 27;469(7331):508-11</RefSource>
<PMID Version="1">21228774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2013 Dec 6;111(23):237402</RefSource>
<PMID Version="1">24476301</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2004 Feb 20;92(7):077601</RefSource>
<PMID Version="1">14995886</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2013 Nov 15;342(6160):830-3</RefSource>
<PMID Version="1">24233718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Jun 24;465(7301):1052-6</RefSource>
<PMID Version="1">20577210</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>07</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25567283</ArticleId>
<ArticleId IdType="pii">nature14025</ArticleId>
<ArticleId IdType="doi">10.1038/nature14025</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003020 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 003020 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25567283
   |texte=   Optically addressable nuclear spins in a solid with a six-hour coherence time.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25567283" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024