Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion.

Identifieur interne : 002785 ( PubMed/Curation ); précédent : 002784; suivant : 002786

Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion.

Auteurs : Tommaso Lorenzi [France] ; Rebecca H. Chisholm [Australie] ; Matteo Melensi [Italie] ; Alexander Lorz [France] ; Marcello Delitala [Italie]

Source :

RBID : pubmed:26119966

Descripteurs français

English descriptors

Abstract

T cells are key players in immune action against the invasion of target cells expressing non-self antigens. During an immune response, antigen-specific T cells dynamically sculpt the antigenic distribution of target cells, and target cells concurrently shape the host's repertoire of antigen-specific T cells. The succession of these reciprocal selective sweeps can result in 'chase-and-escape' dynamics and lead to immune evasion. It has been proposed that immune evasion can be countered by immunotherapy strategies aimed at regulating the three phases of the immune response orchestrated by antigen-specific T cells: expansion, contraction and memory. Here, we test this hypothesis with a mathematical model that considers the immune response as a selection contest between T cells and target cells. The outcomes of our model suggest that shortening the duration of the contraction phase and stabilizing as many T cells as possible inside the long-lived memory reservoir, using dual immunotherapies based on the cytokines interleukin-7 and/or interleukin-15 in combination with molecular factors that can keep the immunomodulatory action of these interleukins under control, should be an important focus of future immunotherapy research.

DOI: 10.1111/imm.12500
PubMed: 26119966

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26119966

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion.</title>
<author>
<name sortKey="Lorenzi, Tommaso" sort="Lorenzi, Tommaso" uniqKey="Lorenzi T" first="Tommaso" last="Lorenzi">Tommaso Lorenzi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre de Mathématiques et de Leurs Applications, ENS Cachan, CNRS, Cachan Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Centre de Mathématiques et de Leurs Applications, ENS Cachan, CNRS, Cachan Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chisholm, Rebecca H" sort="Chisholm, Rebecca H" uniqKey="Chisholm R" first="Rebecca H" last="Chisholm">Rebecca H. Chisholm</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Melensi, Matteo" sort="Melensi, Matteo" uniqKey="Melensi M" first="Matteo" last="Melensi">Matteo Melensi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Health Sciences, A. Avogadro Università del Piemonte Orientale, Novara, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Health Sciences, A. Avogadro Università del Piemonte Orientale, Novara</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lorz, Alexander" sort="Lorz, Alexander" uniqKey="Lorz A" first="Alexander" last="Lorz">Alexander Lorz</name>
<affiliation wicri:level="1">
<nlm:affiliation>MAMBA Team, INRIA-Paris-Rocquencourt, Le Chesnay Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>MAMBA Team, INRIA-Paris-Rocquencourt, Le Chesnay Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Delitala, Marcello" sort="Delitala, Marcello" uniqKey="Delitala M" first="Marcello" last="Delitala">Marcello Delitala</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Mathematical Sciences, Politecnico di Torino, Torino</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26119966</idno>
<idno type="pmid">26119966</idno>
<idno type="doi">10.1111/imm.12500</idno>
<idno type="wicri:Area/PubMed/Corpus">002854</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002854</idno>
<idno type="wicri:Area/PubMed/Curation">002785</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002785</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion.</title>
<author>
<name sortKey="Lorenzi, Tommaso" sort="Lorenzi, Tommaso" uniqKey="Lorenzi T" first="Tommaso" last="Lorenzi">Tommaso Lorenzi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre de Mathématiques et de Leurs Applications, ENS Cachan, CNRS, Cachan Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Centre de Mathématiques et de Leurs Applications, ENS Cachan, CNRS, Cachan Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chisholm, Rebecca H" sort="Chisholm, Rebecca H" uniqKey="Chisholm R" first="Rebecca H" last="Chisholm">Rebecca H. Chisholm</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Melensi, Matteo" sort="Melensi, Matteo" uniqKey="Melensi M" first="Matteo" last="Melensi">Matteo Melensi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Health Sciences, A. Avogadro Università del Piemonte Orientale, Novara, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Health Sciences, A. Avogadro Università del Piemonte Orientale, Novara</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lorz, Alexander" sort="Lorz, Alexander" uniqKey="Lorz A" first="Alexander" last="Lorz">Alexander Lorz</name>
<affiliation wicri:level="1">
<nlm:affiliation>MAMBA Team, INRIA-Paris-Rocquencourt, Le Chesnay Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>MAMBA Team, INRIA-Paris-Rocquencourt, Le Chesnay Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Delitala, Marcello" sort="Delitala, Marcello" uniqKey="Delitala M" first="Marcello" last="Delitala">Marcello Delitala</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Mathematical Sciences, Politecnico di Torino, Torino</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Immunology</title>
<idno type="eISSN">1365-2567</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antigens (immunology)</term>
<term>Cell Death</term>
<term>Cell Proliferation</term>
<term>Computer Simulation</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Immunologic Memory</term>
<term>Immunotherapy (methods)</term>
<term>Lymphocyte Activation</term>
<term>Models, Immunological</term>
<term>Numerical Analysis, Computer-Assisted</term>
<term>T-Lymphocytes (immunology)</term>
<term>T-Lymphocytes (pathology)</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation des lymphocytes</term>
<term>Analyse numérique assistée par ordinateur</term>
<term>Animaux</term>
<term>Antigènes (immunologie)</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Immunothérapie ()</term>
<term>Lymphocytes T (anatomopathologie)</term>
<term>Lymphocytes T (immunologie)</term>
<term>Modèles immunologiques</term>
<term>Mort cellulaire</term>
<term>Mémoire immunologique</term>
<term>Prolifération cellulaire</term>
<term>Simulation numérique</term>
<term>Échappement immunitaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antigens</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Lymphocytes T</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Antigènes</term>
<term>Lymphocytes T</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Immunotherapy</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Death</term>
<term>Cell Proliferation</term>
<term>Computer Simulation</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Immunologic Memory</term>
<term>Lymphocyte Activation</term>
<term>Models, Immunological</term>
<term>Numerical Analysis, Computer-Assisted</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation des lymphocytes</term>
<term>Analyse numérique assistée par ordinateur</term>
<term>Animaux</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Immunothérapie</term>
<term>Modèles immunologiques</term>
<term>Mort cellulaire</term>
<term>Mémoire immunologique</term>
<term>Prolifération cellulaire</term>
<term>Simulation numérique</term>
<term>Échappement immunitaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">T cells are key players in immune action against the invasion of target cells expressing non-self antigens. During an immune response, antigen-specific T cells dynamically sculpt the antigenic distribution of target cells, and target cells concurrently shape the host's repertoire of antigen-specific T cells. The succession of these reciprocal selective sweeps can result in 'chase-and-escape' dynamics and lead to immune evasion. It has been proposed that immune evasion can be countered by immunotherapy strategies aimed at regulating the three phases of the immune response orchestrated by antigen-specific T cells: expansion, contraction and memory. Here, we test this hypothesis with a mathematical model that considers the immune response as a selection contest between T cells and target cells. The outcomes of our model suggest that shortening the duration of the contraction phase and stabilizing as many T cells as possible inside the long-lived memory reservoir, using dual immunotherapies based on the cytokines interleukin-7 and/or interleukin-15 in combination with molecular factors that can keep the immunomodulatory action of these interleukins under control, should be an important focus of future immunotherapy research.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26119966</PMID>
<DateCreated>
<Year>2015</Year>
<Month>09</Month>
<Day>16</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2567</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>146</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Immunology</Title>
<ISOAbbreviation>Immunology</ISOAbbreviation>
</Journal>
<ArticleTitle>Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion.</ArticleTitle>
<Pagination>
<MedlinePgn>271-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/imm.12500</ELocationID>
<Abstract>
<AbstractText>T cells are key players in immune action against the invasion of target cells expressing non-self antigens. During an immune response, antigen-specific T cells dynamically sculpt the antigenic distribution of target cells, and target cells concurrently shape the host's repertoire of antigen-specific T cells. The succession of these reciprocal selective sweeps can result in 'chase-and-escape' dynamics and lead to immune evasion. It has been proposed that immune evasion can be countered by immunotherapy strategies aimed at regulating the three phases of the immune response orchestrated by antigen-specific T cells: expansion, contraction and memory. Here, we test this hypothesis with a mathematical model that considers the immune response as a selection contest between T cells and target cells. The outcomes of our model suggest that shortening the duration of the contraction phase and stabilizing as many T cells as possible inside the long-lived memory reservoir, using dual immunotherapies based on the cytokines interleukin-7 and/or interleukin-15 in combination with molecular factors that can keep the immunomodulatory action of these interleukins under control, should be an important focus of future immunotherapy research.</AbstractText>
<CopyrightInformation>© 2015 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lorenzi</LastName>
<ForeName>Tommaso</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Centre de Mathématiques et de Leurs Applications, ENS Cachan, CNRS, Cachan Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chisholm</LastName>
<ForeName>Rebecca H</ForeName>
<Initials>RH</Initials>
<AffiliationInfo>
<Affiliation>School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Melensi</LastName>
<ForeName>Matteo</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Health Sciences, A. Avogadro Università del Piemonte Orientale, Novara, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lorz</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>MAMBA Team, INRIA-Paris-Rocquencourt, Le Chesnay Cedex, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire Jacques-Louis Lions, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire Jacques-Louis Lions, CNRS, UMR 7598, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Delitala</LastName>
<ForeName>Marcello</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Immunology</MedlineTA>
<NlmUniqueID>0374672</NlmUniqueID>
<ISSNLinking>0019-2805</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000941">Antigens</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2006 Dec 1;177(11):7698-706</RefSource>
<PMID Version="1">17114440</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Math Biosci. 2014 Jul;253:50-62</RefSource>
<PMID Version="1">24759513</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2006 Sep 15;108(6):1949-56</RefSource>
<PMID Version="1">16705084</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Immunol Cell Biol. 2008 Jul;86(5):385-6</RefSource>
<PMID Version="1">18475284</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Immunity. 2008 Dec 19;29(6):848-62</RefSource>
<PMID Version="1">19100699</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Lett. 2006 Jun;9(6):694-705</RefSource>
<PMID Version="1">16706914</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2005 Apr;79(8):4877-85</RefSource>
<PMID Version="1">15795273</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 1999 Oct 15;163(8):4503-9</RefSource>
<PMID Version="1">10510393</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 1999 May;103(9):1243-52</RefSource>
<PMID Version="1">10225967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Infect Immun. 2000 May;68(5):2962-70</RefSource>
<PMID Version="1">10768995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vaccine. 2000 Feb 25;18(16):1717-20</RefSource>
<PMID Version="1">10689155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2005 Jul 1;175(1):112-23</RefSource>
<PMID Version="1">15972637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Parasitol. 2010 Feb;26(2):83-92</RefSource>
<PMID Version="1">20036799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3392-7</RefSource>
<PMID Version="1">12626740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2005 May;115(5):1177-87</RefSource>
<PMID Version="1">15841203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Gene Ther. 2009 Oct;20(10):1143-56</RefSource>
<PMID Version="1">19530914</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1855-60</RefSource>
<PMID Version="1">12574516</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014;9(7):e102821</RefSource>
<PMID Version="1">25054623</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Immunol. 2002 Apr;2(4):251-62</RefSource>
<PMID Version="1">12001996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Immunol. 1996;14:333-67</RefSource>
<PMID Version="1">8717518</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2002 Mar 4;195(5):657-64</RefSource>
<PMID Version="1">11877489</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3810-5</RefSource>
<PMID Version="1">9520449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J R Soc Interface. 2007 Feb 22;4(12):143-53</RefSource>
<PMID Version="1">17210532</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Immunology. 2010 Dec;131(4):525-36</RefSource>
<PMID Version="1">20673240</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2000 Sep 15;165(6):3043-50</RefSource>
<PMID Version="1">10975814</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Rep. 2012 Nov 29;2(5):1438-47</RefSource>
<PMID Version="1">23159042</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Immunol. 2012 Nov;12(11):749-61</RefSource>
<PMID Version="1">23080391</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Immunol. 2002 Nov;3(11):987-9</RefSource>
<PMID Version="1">12407405</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):16004-9</RefSource>
<PMID Version="1">15505208</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vaccine. 2004 Sep 3;22(25-26):3510-21</RefSource>
<PMID Version="1">15308379</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2012 Oct 17;103(8):1802-10</RefSource>
<PMID Version="1">23083724</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 1995 Nov 15;155(10):4521-4</RefSource>
<PMID Version="1">7594447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2006 Nov 24;2(11):e160</RefSource>
<PMID Version="1">17121459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2003 Nov 13;349(20):1907-15</RefSource>
<PMID Version="1">14614165</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Mol Biol Rev. 2012 Mar;76(1):16-32</RefSource>
<PMID Version="1">22390970</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Exp Med Biol. 2010;684:57-68</RefSource>
<PMID Version="1">20795540</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Immunity. 2006 Mar;24(3):233-8</RefSource>
<PMID Version="1">16546089</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2002 Feb 1;168(3):1198-203</RefSource>
<PMID Version="1">11801655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Theor Biol. 2004 Jul 21;229(2):179-88</RefSource>
<PMID Version="1">15207473</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Immunol. 2013 Jan 23;3:404</RefSource>
<PMID Version="1">23346085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 1999 Jan;5(1):83-9</RefSource>
<PMID Version="1">9883844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2005 Apr;37(4):365-72</RefSource>
<PMID Version="1">15750594</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2003 Oct 1;102(7):2541-6</RefSource>
<PMID Version="1">12805064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Biol. 2013 Apr;10(2):025002</RefSource>
<PMID Version="1">23492792</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2008 Mar;118(3):1027-39</RefSource>
<PMID Version="1">18246202</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Immunol. 2014 Sep;14(9):619-29</RefSource>
<PMID Version="1">25145757</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arterioscler Thromb Vasc Biol. 2007 Jan;27(1):204-10</RefSource>
<PMID Version="1">17068285</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000941" MajorTopicYN="N">Antigens</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="Y">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057131" MajorTopicYN="Y">Immune Evasion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007156" MajorTopicYN="N">Immunologic Memory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007167" MajorTopicYN="N">Immunotherapy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008213" MajorTopicYN="Y">Lymphocyte Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018448" MajorTopicYN="Y">Models, Immunological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009716" MajorTopicYN="N">Numerical Analysis, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013601" MajorTopicYN="N">T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4582968 [Available on 10/01/16]</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">T cells</Keyword>
<Keyword MajorTopicYN="N">mathematical modelling</Keyword>
<Keyword MajorTopicYN="N">memory</Keyword>
<Keyword MajorTopicYN="N">theoretical immunology</Keyword>
<Keyword MajorTopicYN="N">vaccination</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26119966</ArticleId>
<ArticleId IdType="doi">10.1111/imm.12500</ArticleId>
<ArticleId IdType="pmc">PMC4582968</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002785 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002785 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26119966
   |texte=   Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26119966" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024