Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigating the genetic architecture of conditional strategies using the environmental threshold model.

Identifieur interne : 002573 ( PubMed/Curation ); précédent : 002572; suivant : 002574

Investigating the genetic architecture of conditional strategies using the environmental threshold model.

Auteurs : Bruno A. Buzatto [Oman] ; Mathieu Buoro [France] ; Wade N. Hazel [États-Unis] ; Joseph L. Tomkins [Australie]

Source :

RBID : pubmed:26674955

Descripteurs français

English descriptors

Abstract

The threshold expression of dichotomous phenotypes that are environmentally cued or induced comprise the vast majority of phenotypic dimorphisms in colour, morphology, behaviour and life history. Modelled as conditional strategies under the framework of evolutionary game theory, the quantitative genetic basis of these traits is a challenge to estimate. The challenge exists firstly because the phenotypic expression of the trait is dichotomous and secondly because the apparent environmental cue is separate from the biological signal pathway that induces the switch between phenotypes. It is the cryptic variation underlying the translation of cue to phenotype that we address here. With a 'half-sib common environment' and a 'family-level split environment' experiment, we examine the environmental and genetic influences that underlie male dimorphism in the earwig Forficula auricularia. From the conceptual framework of the latent environmental threshold (LET) model, we use pedigree information to dissect the genetic architecture of the threshold expression of forceps length. We investigate for the first time the strength of the correlation between observable and cryptic 'proximate' cues. Furthermore, in support of the environmental threshold model, we found no evidence for a genetic correlation between cue and the threshold between phenotypes. Our results show strong correlations between observable and proximate cues and less genetic variation for thresholds than previous studies have suggested. We discuss the importance of generating better estimates of the genetic variation for thresholds when investigating the genetic architecture and heritability of threshold traits. By investigating genetic architecture by means of the LET model, our study supports several key evolutionary ideas related to conditional strategies and improves our understanding of environmentally cued decisions.

DOI: 10.1098/rspb.2015.2075
PubMed: 26674955

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26674955

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Investigating the genetic architecture of conditional strategies using the environmental threshold model.</title>
<author>
<name sortKey="Buzatto, Bruno A" sort="Buzatto, Bruno A" uniqKey="Buzatto B" first="Bruno A" last="Buzatto">Bruno A. Buzatto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia bruno.buzatto@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Buoro, Mathieu" sort="Buoro, Mathieu" uniqKey="Buoro M" first="Mathieu" last="Buoro">Mathieu Buoro</name>
<affiliation wicri:level="1">
<nlm:affiliation>CNRS, Université Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution and Diversité Biologique), 118 route de Narbonne, Toulouse 31062, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, Université Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution and Diversité Biologique), 118 route de Narbonne, Toulouse 31062</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hazel, Wade N" sort="Hazel, Wade N" uniqKey="Hazel W" first="Wade N" last="Hazel">Wade N. Hazel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, DePauw University, Greencastle, IN 46135, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, DePauw University, Greencastle, IN 46135</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tomkins, Joseph L" sort="Tomkins, Joseph L" uniqKey="Tomkins J" first="Joseph L" last="Tomkins">Joseph L. Tomkins</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26674955</idno>
<idno type="pmid">26674955</idno>
<idno type="doi">10.1098/rspb.2015.2075</idno>
<idno type="wicri:Area/PubMed/Corpus">002642</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002642</idno>
<idno type="wicri:Area/PubMed/Curation">002573</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002573</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Investigating the genetic architecture of conditional strategies using the environmental threshold model.</title>
<author>
<name sortKey="Buzatto, Bruno A" sort="Buzatto, Bruno A" uniqKey="Buzatto B" first="Bruno A" last="Buzatto">Bruno A. Buzatto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia bruno.buzatto@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Buoro, Mathieu" sort="Buoro, Mathieu" uniqKey="Buoro M" first="Mathieu" last="Buoro">Mathieu Buoro</name>
<affiliation wicri:level="1">
<nlm:affiliation>CNRS, Université Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution and Diversité Biologique), 118 route de Narbonne, Toulouse 31062, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, Université Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution and Diversité Biologique), 118 route de Narbonne, Toulouse 31062</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hazel, Wade N" sort="Hazel, Wade N" uniqKey="Hazel W" first="Wade N" last="Hazel">Wade N. Hazel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, DePauw University, Greencastle, IN 46135, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, DePauw University, Greencastle, IN 46135</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tomkins, Joseph L" sort="Tomkins, Joseph L" uniqKey="Tomkins J" first="Joseph L" last="Tomkins">Joseph L. Tomkins</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings. Biological sciences</title>
<idno type="eISSN">1471-2954</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Gene-Environment Interaction</term>
<term>Genetic Variation</term>
<term>Insects (anatomy & histology)</term>
<term>Insects (genetics)</term>
<term>Male</term>
<term>Models, Genetic</term>
<term>Sex Characteristics</term>
<term>United Kingdom</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Caractères sexuels</term>
<term>Femelle</term>
<term>Insectes (anatomie et histologie)</term>
<term>Insectes (génétique)</term>
<term>Interaction entre gènes et environnement</term>
<term>Modèles génétiques</term>
<term>Mâle</term>
<term>Royaume-Uni</term>
<term>Variation génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Insectes</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Insects</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Insects</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Insectes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Gene-Environment Interaction</term>
<term>Genetic Variation</term>
<term>Male</term>
<term>Models, Genetic</term>
<term>Sex Characteristics</term>
<term>United Kingdom</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Caractères sexuels</term>
<term>Femelle</term>
<term>Interaction entre gènes et environnement</term>
<term>Modèles génétiques</term>
<term>Mâle</term>
<term>Royaume-Uni</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The threshold expression of dichotomous phenotypes that are environmentally cued or induced comprise the vast majority of phenotypic dimorphisms in colour, morphology, behaviour and life history. Modelled as conditional strategies under the framework of evolutionary game theory, the quantitative genetic basis of these traits is a challenge to estimate. The challenge exists firstly because the phenotypic expression of the trait is dichotomous and secondly because the apparent environmental cue is separate from the biological signal pathway that induces the switch between phenotypes. It is the cryptic variation underlying the translation of cue to phenotype that we address here. With a 'half-sib common environment' and a 'family-level split environment' experiment, we examine the environmental and genetic influences that underlie male dimorphism in the earwig Forficula auricularia. From the conceptual framework of the latent environmental threshold (LET) model, we use pedigree information to dissect the genetic architecture of the threshold expression of forceps length. We investigate for the first time the strength of the correlation between observable and cryptic 'proximate' cues. Furthermore, in support of the environmental threshold model, we found no evidence for a genetic correlation between cue and the threshold between phenotypes. Our results show strong correlations between observable and proximate cues and less genetic variation for thresholds than previous studies have suggested. We discuss the importance of generating better estimates of the genetic variation for thresholds when investigating the genetic architecture and heritability of threshold traits. By investigating genetic architecture by means of the LET model, our study supports several key evolutionary ideas related to conditional strategies and improves our understanding of environmentally cued decisions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26674955</PMID>
<DateCreated>
<Year>2015</Year>
<Month>12</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>01</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1471-2954</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>282</Volume>
<Issue>1821</Issue>
<PubDate>
<Year>2015</Year>
<Month>12</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings. Biological sciences</Title>
<ISOAbbreviation>Proc. Biol. Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Investigating the genetic architecture of conditional strategies using the environmental threshold model.</ArticleTitle>
<Pagination>
<MedlinePgn>20152075</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rspb.2015.2075</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">20152075</ELocationID>
<Abstract>
<AbstractText>The threshold expression of dichotomous phenotypes that are environmentally cued or induced comprise the vast majority of phenotypic dimorphisms in colour, morphology, behaviour and life history. Modelled as conditional strategies under the framework of evolutionary game theory, the quantitative genetic basis of these traits is a challenge to estimate. The challenge exists firstly because the phenotypic expression of the trait is dichotomous and secondly because the apparent environmental cue is separate from the biological signal pathway that induces the switch between phenotypes. It is the cryptic variation underlying the translation of cue to phenotype that we address here. With a 'half-sib common environment' and a 'family-level split environment' experiment, we examine the environmental and genetic influences that underlie male dimorphism in the earwig Forficula auricularia. From the conceptual framework of the latent environmental threshold (LET) model, we use pedigree information to dissect the genetic architecture of the threshold expression of forceps length. We investigate for the first time the strength of the correlation between observable and cryptic 'proximate' cues. Furthermore, in support of the environmental threshold model, we found no evidence for a genetic correlation between cue and the threshold between phenotypes. Our results show strong correlations between observable and proximate cues and less genetic variation for thresholds than previous studies have suggested. We discuss the importance of generating better estimates of the genetic variation for thresholds when investigating the genetic architecture and heritability of threshold traits. By investigating genetic architecture by means of the LET model, our study supports several key evolutionary ideas related to conditional strategies and improves our understanding of environmentally cued decisions.</AbstractText>
<CopyrightInformation>© 2015 The Author(s).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Buzatto</LastName>
<ForeName>Bruno A</ForeName>
<Initials>BA</Initials>
<Identifier Source="ORCID">0000-0002-2711-0336</Identifier>
<AffiliationInfo>
<Affiliation>Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia bruno.buzatto@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buoro</LastName>
<ForeName>Mathieu</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0001-7053-3767</Identifier>
<AffiliationInfo>
<Affiliation>CNRS, Université Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution and Diversité Biologique), 118 route de Narbonne, Toulouse 31062, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hazel</LastName>
<ForeName>Wade N</ForeName>
<Initials>WN</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, DePauw University, Greencastle, IN 46135, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tomkins</LastName>
<ForeName>Joseph L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>Dryad</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.5061/dryad.3J2MP</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Proc Biol Sci</MedlineTA>
<NlmUniqueID>101245157</NlmUniqueID>
<ISSNLinking>0962-8452</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2011 Apr 12;21(7):569-73</RefSource>
<PMID Version="1">21439829</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2009 Feb;63(2):459-68</RefSource>
<PMID Version="1">19154360</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1934 Nov;19(6):506-36</RefSource>
<PMID Version="1">17246735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2012 Apr;25(4):748-58</RefSource>
<PMID Version="1">22356471</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 2007 Oct;22(10):522-8</RefSource>
<PMID Version="1">17919770</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Evol Biol. 2008 May;21(3):705-15</RefSource>
<PMID Version="1">18355186</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 1996 Feb;11(2):92-8</RefSource>
<PMID Version="1">21237769</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Oct 28;431(7012):1099-103</RefSource>
<PMID Version="1">15510148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anim Behav. 1998 Aug;56(2):347-356</RefSource>
<PMID Version="1">9787025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1931 Mar;16(2):97-159</RefSource>
<PMID Version="1">17246615</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2004 Jun;163(6):888-900</RefSource>
<PMID Version="1">15266386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anim Behav. 2000 Apr;59(4):753-762</RefSource>
<PMID Version="1">10792930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1977 Apr 28;266(5605):828-30</RefSource>
<PMID Version="1">865602</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 1990 Dec 22;242(1305):181-7</RefSource>
<PMID Version="1">1983034</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2014 May 19;369(1642):20130625</RefSource>
<PMID Version="1">24686942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2014 Jun;68(6):1671-86</RefSource>
<PMID Version="1">24593685</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Evolution. 2012 Apr;66(4):996-1009</RefSource>
<PMID Version="1">22486685</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059647" MajorTopicYN="Y">Gene-Environment Interaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007313" MajorTopicYN="N">Insects</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012727" MajorTopicYN="N">Sex Characteristics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006113" MajorTopicYN="N">United Kingdom</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4707757 [Available on 12/22/16]</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">alternative reproductive tactics</Keyword>
<Keyword MajorTopicYN="Y">intrasexual dimorphism</Keyword>
<Keyword MajorTopicYN="Y">male dimorphism</Keyword>
<Keyword MajorTopicYN="Y">phenotypic plasticity</Keyword>
<Keyword MajorTopicYN="Y">polyphenism</Keyword>
<Keyword MajorTopicYN="Y">quantitative genetics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26674955</ArticleId>
<ArticleId IdType="pii">rspb.2015.2075</ArticleId>
<ArticleId IdType="doi">10.1098/rspb.2015.2075</ArticleId>
<ArticleId IdType="pmc">PMC4707757</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002573 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002573 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26674955
   |texte=   Investigating the genetic architecture of conditional strategies using the environmental threshold model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26674955" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024