Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine.

Identifieur interne : 002560 ( PubMed/Curation ); précédent : 002559; suivant : 002561

Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine.

Auteurs : Yann Salmon [Royaume-Uni] ; José M. Torres-Ruiz [France] ; Rafael Poyatos [Espagne] ; Jordi Martinez-Vilalta [Espagne] ; Patrick Meir [Royaume-Uni] ; Hervé Cochard [France] ; Maurizio Mencuccini [Royaume-Uni]

Source :

RBID : pubmed:25997464

Descripteurs français

English descriptors

Abstract

Understanding physiological processes involved in drought-induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought-exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non-defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non-defoliated trees. Defoliated trees maintained gas exchange while non-defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non-structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non-defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees.

DOI: 10.1111/pce.12572
PubMed: 25997464

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25997464

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine.</title>
<author>
<name sortKey="Salmon, Yann" sort="Salmon, Yann" uniqKey="Salmon Y" first="Yann" last="Salmon">Yann Salmon</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Torres Ruiz, Jose M" sort="Torres Ruiz, Jose M" uniqKey="Torres Ruiz J" first="José M" last="Torres-Ruiz">José M. Torres-Ruiz</name>
<affiliation wicri:level="1">
<nlm:affiliation>BIOGECO, UMR 1202, Université de Bordeaux, F-33615, Pessac, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, UMR 1202, Université de Bordeaux, F-33615, Pessac</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Poyatos, Rafael" sort="Poyatos, Rafael" uniqKey="Poyatos R" first="Rafael" last="Poyatos">Rafael Poyatos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Campus de UAB, CREAF, 08193, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Campus de UAB, CREAF, 08193, Barcelona</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Martinez Vilalta, Jordi" sort="Martinez Vilalta, Jordi" uniqKey="Martinez Vilalta J" first="Jordi" last="Martinez-Vilalta">Jordi Martinez-Vilalta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Campus de UAB, CREAF, 08193, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Campus de UAB, CREAF, 08193, Barcelona</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Meir, Patrick" sort="Meir, Patrick" uniqKey="Meir P" first="Patrick" last="Meir">Patrick Meir</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cochard, Herve" sort="Cochard, Herve" uniqKey="Cochard H" first="Hervé" last="Cochard">Hervé Cochard</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRA, UMR547 PIAF, Clermont Université, F-63100, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR547 PIAF, Clermont Université, F-63100, Clermont-Ferrand</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mencuccini, Maurizio" sort="Mencuccini, Maurizio" uniqKey="Mencuccini M" first="Maurizio" last="Mencuccini">Maurizio Mencuccini</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25997464</idno>
<idno type="pmid">25997464</idno>
<idno type="doi">10.1111/pce.12572</idno>
<idno type="wicri:Area/PubMed/Corpus">002629</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002629</idno>
<idno type="wicri:Area/PubMed/Curation">002560</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002560</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine.</title>
<author>
<name sortKey="Salmon, Yann" sort="Salmon, Yann" uniqKey="Salmon Y" first="Yann" last="Salmon">Yann Salmon</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Torres Ruiz, Jose M" sort="Torres Ruiz, Jose M" uniqKey="Torres Ruiz J" first="José M" last="Torres-Ruiz">José M. Torres-Ruiz</name>
<affiliation wicri:level="1">
<nlm:affiliation>BIOGECO, UMR 1202, Université de Bordeaux, F-33615, Pessac, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, UMR 1202, Université de Bordeaux, F-33615, Pessac</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Poyatos, Rafael" sort="Poyatos, Rafael" uniqKey="Poyatos R" first="Rafael" last="Poyatos">Rafael Poyatos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Campus de UAB, CREAF, 08193, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Campus de UAB, CREAF, 08193, Barcelona</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Martinez Vilalta, Jordi" sort="Martinez Vilalta, Jordi" uniqKey="Martinez Vilalta J" first="Jordi" last="Martinez-Vilalta">Jordi Martinez-Vilalta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Campus de UAB, CREAF, 08193, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Campus de UAB, CREAF, 08193, Barcelona</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Meir, Patrick" sort="Meir, Patrick" uniqKey="Meir P" first="Patrick" last="Meir">Patrick Meir</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cochard, Herve" sort="Cochard, Herve" uniqKey="Cochard H" first="Hervé" last="Cochard">Hervé Cochard</name>
<affiliation wicri:level="1">
<nlm:affiliation>INRA, UMR547 PIAF, Clermont Université, F-63100, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR547 PIAF, Clermont Université, F-63100, Clermont-Ferrand</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mencuccini, Maurizio" sort="Mencuccini, Maurizio" uniqKey="Mencuccini M" first="Maurizio" last="Mencuccini">Maurizio Mencuccini</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrates</term>
<term>Carbon (metabolism)</term>
<term>Droughts</term>
<term>Photosynthesis (physiology)</term>
<term>Pinus sylvestris (growth & development)</term>
<term>Pinus sylvestris (physiology)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (physiology)</term>
<term>Seasons</term>
<term>Trees</term>
<term>Water (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres</term>
<term>Carbone (métabolisme)</term>
<term>Eau (physiologie)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Glucides</term>
<term>Photosynthèse (physiologie)</term>
<term>Pinus sylvestris (croissance et développement)</term>
<term>Pinus sylvestris (physiologie)</term>
<term>Saisons</term>
<term>Sécheresses</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbohydrates</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Pinus sylvestris</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Pinus sylvestris</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Pinus sylvestris</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
<term>Pinus sylvestris</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Seasons</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Glucides</term>
<term>Saisons</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding physiological processes involved in drought-induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought-exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non-defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non-defoliated trees. Defoliated trees maintained gas exchange while non-defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non-structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non-defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25997464</PMID>
<DateCreated>
<Year>2015</Year>
<Month>12</Month>
<Day>01</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2015</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ.</ISOAbbreviation>
</Journal>
<ArticleTitle>Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine.</ArticleTitle>
<Pagination>
<MedlinePgn>2575-88</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.12572</ELocationID>
<Abstract>
<AbstractText>Understanding physiological processes involved in drought-induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought-exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non-defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non-defoliated trees. Defoliated trees maintained gas exchange while non-defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non-structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non-defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees.</AbstractText>
<CopyrightInformation>© 2015 The Authors. Plant, Cell & Environment published by JohnWiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Salmon</LastName>
<ForeName>Yann</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Torres-Ruiz</LastName>
<ForeName>José M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>BIOGECO, UMR 1202, Université de Bordeaux, F-33615, Pessac, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>UMR 1202 BIOGECO, INRA, 33612, Cestas, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poyatos</LastName>
<ForeName>Rafael</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Campus de UAB, CREAF, 08193, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martinez-Vilalta</LastName>
<ForeName>Jordi</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Campus de UAB, CREAF, 08193, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meir</LastName>
<ForeName>Patrick</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Research School of Biology, Australian National University, ACT 2601, Canberra, Australian Capital Territory, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cochard</LastName>
<ForeName>Hervé</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR547 PIAF, Clermont Université, F-63100, Clermont-Ferrand, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mencuccini</LastName>
<ForeName>Maurizio</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Geosciences, University of Edinburgh, Edinburgh, EH93JN, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>ICREA, CREAF, 08193, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002241">Carbohydrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2010 Mar;30(3):346-60</RefSource>
<PMID Version="1">20067912</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2013 Oct;36(10):1812-25</RefSource>
<PMID Version="1">23461476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Mar;197(4):1142-51</RefSource>
<PMID Version="1">23311898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2014 Sep;240(3):553-64</RefSource>
<PMID Version="1">24957702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2015 Apr;35(4):415-24</RefSource>
<PMID Version="1">25030936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1984 May;75(1):95-101</RefSource>
<PMID Version="1">16663610</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1995 Jan;15(1):1-10</RefSource>
<PMID Version="1">14966005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2015 Apr;206(1):411-21</RefSource>
<PMID Version="1">25412472</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15144-8</RefSource>
<PMID Version="1">16217022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Biol (Stuttg). 2012 Jan;14(1):142-8</RefSource>
<PMID Version="1">21974742</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2015 Oct;208(2):396-409</RefSource>
<PMID Version="1">25988920</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1996 Aug;111(4):1051-1057</RefSource>
<PMID Version="1">12226347</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2009 Oct;184(2):353-64</RefSource>
<PMID Version="1">19674333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 2011 Oct;26(10):523-32</RefSource>
<PMID Version="1">21802765</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2010 Sep;154(1):357-72</RefSource>
<PMID Version="1">20631317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2014 Sep;203(4):1028-35</RefSource>
<PMID Version="1">24824859</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2010 Apr;186(2):274-81</RefSource>
<PMID Version="1">20409184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2012 Apr;63(7):2565-78</RefSource>
<PMID Version="1">22268160</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1998 Jun;18(6):393-402</RefSource>
<PMID Version="1">12651364</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2014 Jan;37(1):153-61</RefSource>
<PMID Version="1">23730972</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2007 Sep;30(9):1035-40</RefSource>
<PMID Version="1">17661745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2015 Mar;35(3):229-42</RefSource>
<PMID Version="1">25724949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2009 Jul;32(7):859-74</RefSource>
<PMID Version="1">19236606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oecologia. 2007 Aug;153(2):245-59</RefSource>
<PMID Version="1">17453248</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2012 Sep;32(9):1161-70</RefSource>
<PMID Version="1">22907978</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2013 Mar;36(3):655-69</RefSource>
<PMID Version="1">22934921</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Feb;197(3):862-72</RefSource>
<PMID Version="1">23228042</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Apr;198(2):567-78</RefSource>
<PMID Version="1">23421561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2008;178(4):719-39</RefSource>
<PMID Version="1">18422905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Oct;200(2):304-21</RefSource>
<PMID Version="1">24004027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2008;178(3):603-16</RefSource>
<PMID Version="1">18331428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1988 Nov;88(3):574-80</RefSource>
<PMID Version="1">16666351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2010 Aug 1;33(8):1351-60</RefSource>
<PMID Version="1">20374535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Oct;200(2):322-9</RefSource>
<PMID Version="1">23593942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2008 Feb;28(2):265-76</RefSource>
<PMID Version="1">18055437</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2013 Mar;33(3):252-60</RefSource>
<PMID Version="1">23514762</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2015 Dec;38(12):2575-88</RefSource>
<PMID Version="1">25997464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2007;58(8):2113-31</RefSource>
<PMID Version="1">17490998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):E68; author reply e69</RefSource>
<PMID Version="1">19506239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glob Chang Biol. 2013 Jan;19(1):229-40</RefSource>
<PMID Version="1">23504734</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2014 Jun 19;165(4):1557-1565</RefSource>
<PMID Version="1">24948828</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2011 May;190(3):750-9</RefSource>
<PMID Version="1">21261625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2013 Mar;33(3):241-51</RefSource>
<PMID Version="1">23355634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Oct;200(2):388-401</RefSource>
<PMID Version="1">23594415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2010 Apr;186(2):264-6</RefSource>
<PMID Version="1">20409181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2014 Apr;65(7):1751-9</RefSource>
<PMID Version="1">24431155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2013 Dec;36(12):2163-74</RefSource>
<PMID Version="1">23639077</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 2014 May;34(5):443-58</RefSource>
<PMID Version="1">24664613</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tree Physiol. 1998 Aug-Sep;18(8_9):589-593</RefSource>
<PMID Version="1">12651346</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002241" MajorTopicYN="N">Carbohydrates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D041605" MajorTopicYN="N">Pinus sylvestris</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4989476</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NSC</Keyword>
<Keyword MajorTopicYN="N">drought</Keyword>
<Keyword MajorTopicYN="N">ecophysiology</Keyword>
<Keyword MajorTopicYN="N">leaf gas exchange</Keyword>
<Keyword MajorTopicYN="N">mortality</Keyword>
<Keyword MajorTopicYN="N">photosynthesis</Keyword>
<Keyword MajorTopicYN="N">transpiration</Keyword>
<Keyword MajorTopicYN="N">tree</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25997464</ArticleId>
<ArticleId IdType="doi">10.1111/pce.12572</ArticleId>
<ArticleId IdType="pmc">PMC4989476</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002560 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002560 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25997464
   |texte=   Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25997464" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024