Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Closing the gap between rocks and clocks using total-evidence dating.

Identifieur interne : 001C16 ( PubMed/Curation ); précédent : 001C15; suivant : 001C17

Closing the gap between rocks and clocks using total-evidence dating.

Auteurs : Fredrik Ronquist [Suède] ; Nicolas Lartillot [France] ; Matthew J. Phillips [Australie]

Source :

RBID : pubmed:27325833

Descripteurs français

English descriptors

Abstract

Total-evidence dating (TED) allows evolutionary biologists to incorporate a wide range of dating information into a unified statistical analysis. One might expect this to improve the agreement between rocks and clocks but this is not necessarily the case. We explore the reasons for such discordance using a mammalian dataset with rich molecular, morphological and fossil information. There is strong conflict in this dataset between morphology and molecules under standard stochastic models. This causes TED to push divergence events back in time when using inadequate models or vague priors, a phenomenon we term 'deep root attraction' (DRA). We identify several causes of DRA. Failure to account for diversified sampling results in dramatic DRA, but this can be addressed using existing techniques. Inadequate morphological models also appear to be a major contributor to DRA. The major reason seems to be that current models do not account for dependencies among morphological characters, causing distorted topology and branch length estimates. This is particularly problematic for huge morphological datasets, which may contain large numbers of correlated characters. Finally, diversification and fossil sampling priors that do not incorporate all the available background information can contribute to DRA, but these priors can also be used to compensate for DRA. Specifically, we show that DRA in the mammalian dataset can be addressed by introducing a modest extra penalty for ghost lineages that are unobserved in the fossil record, for instance by assuming rapid diversification, rare extinction or high fossil sampling rate; any of these assumptions produces highly congruent divergence time estimates with a minimal gap between rocks and clocks. Under these conditions, fossils have a stabilizing influence on divergence time estimates and significantly increase the precision of those estimates, which are generally close to the dates suggested by palaeontologists.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.

DOI: 10.1098/rstb.2015.0136
PubMed: 27325833

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27325833

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Closing the gap between rocks and clocks using total-evidence dating.</title>
<author>
<name sortKey="Ronquist, Fredrik" sort="Ronquist, Fredrik" uniqKey="Ronquist F" first="Fredrik" last="Ronquist">Fredrik Ronquist</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, 104 05 Stockholm, Sweden fredrik.ronquist@nrm.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, 104 05 Stockholm</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lartillot, Nicolas" sort="Lartillot, Nicolas" uniqKey="Lartillot N" first="Nicolas" last="Lartillot">Nicolas Lartillot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Phillips, Matthew J" sort="Phillips, Matthew J" uniqKey="Phillips M" first="Matthew J" last="Phillips">Matthew J. Phillips</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Earth, Environmental and Biological Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Earth, Environmental and Biological Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27325833</idno>
<idno type="pmid">27325833</idno>
<idno type="doi">10.1098/rstb.2015.0136</idno>
<idno type="wicri:Area/PubMed/Corpus">001C40</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001C40</idno>
<idno type="wicri:Area/PubMed/Curation">001C16</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001C16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Closing the gap between rocks and clocks using total-evidence dating.</title>
<author>
<name sortKey="Ronquist, Fredrik" sort="Ronquist, Fredrik" uniqKey="Ronquist F" first="Fredrik" last="Ronquist">Fredrik Ronquist</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, 104 05 Stockholm, Sweden fredrik.ronquist@nrm.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, 104 05 Stockholm</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lartillot, Nicolas" sort="Lartillot, Nicolas" uniqKey="Lartillot N" first="Nicolas" last="Lartillot">Nicolas Lartillot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Phillips, Matthew J" sort="Phillips, Matthew J" uniqKey="Phillips M" first="Matthew J" last="Phillips">Matthew J. Phillips</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Earth, Environmental and Biological Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Earth, Environmental and Biological Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title>
<idno type="eISSN">1471-2970</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Calibration</term>
<term>Evolution, Molecular</term>
<term>Fossils (anatomy & histology)</term>
<term>Mammals (anatomy & histology)</term>
<term>Mammals (genetics)</term>
<term>Phylogeny</term>
<term>Time</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Calibrage</term>
<term>Fossiles (anatomie et histologie)</term>
<term>Mammifères (anatomie et histologie)</term>
<term>Mammifères (génétique)</term>
<term>Phylogénie</term>
<term>Temps</term>
<term>Évolution biologique</term>
<term>Évolution moléculaire</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Fossiles</term>
<term>Mammifères</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Fossils</term>
<term>Mammals</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mammals</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mammifères</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Calibration</term>
<term>Evolution, Molecular</term>
<term>Phylogeny</term>
<term>Time</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Calibrage</term>
<term>Phylogénie</term>
<term>Temps</term>
<term>Évolution biologique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Total-evidence dating (TED) allows evolutionary biologists to incorporate a wide range of dating information into a unified statistical analysis. One might expect this to improve the agreement between rocks and clocks but this is not necessarily the case. We explore the reasons for such discordance using a mammalian dataset with rich molecular, morphological and fossil information. There is strong conflict in this dataset between morphology and molecules under standard stochastic models. This causes TED to push divergence events back in time when using inadequate models or vague priors, a phenomenon we term 'deep root attraction' (DRA). We identify several causes of DRA. Failure to account for diversified sampling results in dramatic DRA, but this can be addressed using existing techniques. Inadequate morphological models also appear to be a major contributor to DRA. The major reason seems to be that current models do not account for dependencies among morphological characters, causing distorted topology and branch length estimates. This is particularly problematic for huge morphological datasets, which may contain large numbers of correlated characters. Finally, diversification and fossil sampling priors that do not incorporate all the available background information can contribute to DRA, but these priors can also be used to compensate for DRA. Specifically, we show that DRA in the mammalian dataset can be addressed by introducing a modest extra penalty for ghost lineages that are unobserved in the fossil record, for instance by assuming rapid diversification, rare extinction or high fossil sampling rate; any of these assumptions produces highly congruent divergence time estimates with a minimal gap between rocks and clocks. Under these conditions, fossils have a stabilizing influence on divergence time estimates and significantly increase the precision of those estimates, which are generally close to the dates suggested by palaeontologists.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27325833</PMID>
<DateCreated>
<Year>2016</Year>
<Month>06</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1471-2970</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>371</Volume>
<Issue>1699</Issue>
<PubDate>
<Year>2016</Year>
<Month>07</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</Title>
<ISOAbbreviation>Philos. Trans. R. Soc. Lond., B, Biol. Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Closing the gap between rocks and clocks using total-evidence dating.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rstb.2015.0136</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">20150136</ELocationID>
<Abstract>
<AbstractText>Total-evidence dating (TED) allows evolutionary biologists to incorporate a wide range of dating information into a unified statistical analysis. One might expect this to improve the agreement between rocks and clocks but this is not necessarily the case. We explore the reasons for such discordance using a mammalian dataset with rich molecular, morphological and fossil information. There is strong conflict in this dataset between morphology and molecules under standard stochastic models. This causes TED to push divergence events back in time when using inadequate models or vague priors, a phenomenon we term 'deep root attraction' (DRA). We identify several causes of DRA. Failure to account for diversified sampling results in dramatic DRA, but this can be addressed using existing techniques. Inadequate morphological models also appear to be a major contributor to DRA. The major reason seems to be that current models do not account for dependencies among morphological characters, causing distorted topology and branch length estimates. This is particularly problematic for huge morphological datasets, which may contain large numbers of correlated characters. Finally, diversification and fossil sampling priors that do not incorporate all the available background information can contribute to DRA, but these priors can also be used to compensate for DRA. Specifically, we show that DRA in the mammalian dataset can be addressed by introducing a modest extra penalty for ghost lineages that are unobserved in the fossil record, for instance by assuming rapid diversification, rare extinction or high fossil sampling rate; any of these assumptions produces highly congruent divergence time estimates with a minimal gap between rocks and clocks. Under these conditions, fossils have a stabilizing influence on divergence time estimates and significantly increase the precision of those estimates, which are generally close to the dates suggested by palaeontologists.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.</AbstractText>
<CopyrightInformation>© 2016 The Authors.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ronquist</LastName>
<ForeName>Fredrik</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0002-3929-251X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, 104 05 Stockholm, Sweden fredrik.ronquist@nrm.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lartillot</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0002-9973-7760</Identifier>
<AffiliationInfo>
<Affiliation>Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Phillips</LastName>
<ForeName>Matthew J</ForeName>
<Initials>MJ</Initials>
<Identifier Source="ORCID">0000-0003-1532-449X</Identifier>
<AffiliationInfo>
<Affiliation>School of Earth, Environmental and Biological Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Philos Trans R Soc Lond B Biol Sci</MedlineTA>
<NlmUniqueID>7503623</NlmUniqueID>
<ISSNLinking>0962-8436</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2007 Apr 18;2(4):e384</RefSource>
<PMID Version="1">17440620</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2007 Dec;24(12):2669-80</RefSource>
<PMID Version="1">17890241</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2012 Sep 7;279(1742):3491-500</RefSource>
<PMID Version="1">22628470</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2957-66</RefSource>
<PMID Version="1">25009181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2007 Jun 21;447(7147):1003-6</RefSource>
<PMID Version="1">17581585</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2014 Dec 04;10(12):e1003919</RefSource>
<PMID Version="1">25474353</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2011 Oct 28;334(6055):521-4</RefSource>
<PMID Version="1">21940861</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2004 Jun;21(6):1123-33</RefSource>
<PMID Version="1">15034130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Apr 25;416(6883):816-22</RefSource>
<PMID Version="1">11976675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Syst Biol. 2012 May;61(3):539-42</RefSource>
<PMID Version="1">22357727</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Syst Biol. 2001 Nov-Dec;50(6):913-25</RefSource>
<PMID Version="1">12116640</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Syst Biol. 2016 Mar;65(2):228-49</RefSource>
<PMID Version="1">26493827</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1992 Mar 12;356(6365):121-5</RefSource>
<PMID Version="1">1545862</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Genet. 2015 Nov;31(11):637-50</RefSource>
<PMID Version="1">26439502</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Aug 24;476(7361):442-5</RefSource>
<PMID Version="1">21866158</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2013 Aug 9;341(6146):613</RefSource>
<PMID Version="1">23929967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2006 Sep;23(9):1762-75</RefSource>
<PMID Version="1">16787998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2013 Feb 8;339(6120):662-7</RefSource>
<PMID Version="1">23393258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Lett. 2014 Jan 15;10(1):20131003</RefSource>
<PMID Version="1">24429684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2014 Oct 22;281(1793):null</RefSource>
<PMID Version="1">25165770</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2013 Aug 9;341(6146):613</RefSource>
<PMID Version="1">23929968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Syst Biol. 2015 Nov;64(6):1089-103</RefSource>
<PMID Version="1">26272507</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Syst Biol. 2012 Dec 1;61(6):973-99</RefSource>
<PMID Version="1">22723471</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Syst Biol. 2016 May;65(3):546-57</RefSource>
<PMID Version="1">26658702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Syst Biol. 2012 Mar;61(2):346-59</RefSource>
<PMID Version="1">22105867</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2011 Sep;28(9):2577-89</RefSource>
<PMID Version="1">21482666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Syst Biol. 2011 Jul;60(4):466-81</RefSource>
<PMID Version="1">21540408</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2003 Oct;20(10):1692-704</RefSource>
<PMID Version="1">12885968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2015 Oct 5;25(19):R922-9</RefSource>
<PMID Version="1">26439355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(10):e46445</RefSource>
<PMID Version="1">23071573</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Theor Biol. 2010 Dec 7;267(3):396-404</RefSource>
<PMID Version="1">20851708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2016 Jul 19;371(1699):null</RefSource>
<PMID Version="1">27325829</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Phylogenet Evol. 2009 Mar;50(3):661-6</RefSource>
<PMID Version="1">19111935</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002138" MajorTopicYN="N">Calibration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005580" MajorTopicYN="N">Fossils</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008322" MajorTopicYN="N">Mammals</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013995" MajorTopicYN="N">Time</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4920337</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">deep root attraction</Keyword>
<Keyword MajorTopicYN="Y">fossilized birth–death</Keyword>
<Keyword MajorTopicYN="Y">mammals</Keyword>
<Keyword MajorTopicYN="Y">total-evidence dating</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27325833</ArticleId>
<ArticleId IdType="pii">rstb.2015.0136</ArticleId>
<ArticleId IdType="doi">10.1098/rstb.2015.0136</ArticleId>
<ArticleId IdType="pmc">PMC4920337</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001C16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:27325833
   |texte=   Closing the gap between rocks and clocks using total-evidence dating.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:27325833" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024