Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation.

Identifieur interne : 001A62 ( PubMed/Curation ); précédent : 001A61; suivant : 001A63

Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation.

Auteurs : Jean-Pierre Changeux [France] ; Arthur Christopoulos [Australie]

Source :

RBID : pubmed:27565340

Descripteurs français

English descriptors

Abstract

Four major receptor families enable cells to respond to chemical and physical signals from their proximal environment. The ligand- and voltage-gated ion channels, G-protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases are all allosteric proteins that carry multiple, spatially distinct, yet conformationally linked ligand-binding sites. Recent studies point to common mechanisms governing the allosteric transitions of these receptors, including the impact of oligomerization, pre-existing and functionally distinct conformational ensembles, intrinsically disordered regions, and the occurrence of allosteric modulatory sites. Importantly, synthetic allosteric modulators are being discovered for these receptors, providing an enriched, yet challenging, landscape for novel therapeutics.

DOI: 10.1016/j.cell.2016.08.015
PubMed: 27565340

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27565340

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation.</title>
<author>
<name sortKey="Changeux, Jean Pierre" sort="Changeux, Jean Pierre" uniqKey="Changeux J" first="Jean-Pierre" last="Changeux">Jean-Pierre Changeux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Collège de France and CNRS URA 2182, Institut Pasteur, 75015 Paris, France. Electronic address: changeux@noos.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Collège de France and CNRS URA 2182, Institut Pasteur, 75015 Paris</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Christopoulos, Arthur" sort="Christopoulos, Arthur" uniqKey="Christopoulos A" first="Arthur" last="Christopoulos">Arthur Christopoulos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, VIC 3052 Parkville, Australia. Electronic address: arthur.christopoulos@monash.edu.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, VIC 3052 Parkville</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27565340</idno>
<idno type="pmid">27565340</idno>
<idno type="doi">10.1016/j.cell.2016.08.015</idno>
<idno type="wicri:Area/PubMed/Corpus">001A86</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001A86</idno>
<idno type="wicri:Area/PubMed/Curation">001A62</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001A62</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation.</title>
<author>
<name sortKey="Changeux, Jean Pierre" sort="Changeux, Jean Pierre" uniqKey="Changeux J" first="Jean-Pierre" last="Changeux">Jean-Pierre Changeux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Collège de France and CNRS URA 2182, Institut Pasteur, 75015 Paris, France. Electronic address: changeux@noos.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Collège de France and CNRS URA 2182, Institut Pasteur, 75015 Paris</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Christopoulos, Arthur" sort="Christopoulos, Arthur" uniqKey="Christopoulos A" first="Arthur" last="Christopoulos">Arthur Christopoulos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, VIC 3052 Parkville, Australia. Electronic address: arthur.christopoulos@monash.edu.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, VIC 3052 Parkville</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell</title>
<idno type="eISSN">1097-4172</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allosteric Regulation</term>
<term>Allosteric Site</term>
<term>Animals</term>
<term>Disease (genetics)</term>
<term>Drug Design</term>
<term>Humans</term>
<term>Ligand-Gated Ion Channels (agonists)</term>
<term>Ligand-Gated Ion Channels (chemistry)</term>
<term>Ligands</term>
<term>Models, Chemical</term>
<term>Mutation</term>
<term>Protein Conformation</term>
<term>Protein Multimerization</term>
<term>Receptor Protein-Tyrosine Kinases (agonists)</term>
<term>Receptor Protein-Tyrosine Kinases (chemistry)</term>
<term>Receptors, Cytoplasmic and Nuclear (agonists)</term>
<term>Receptors, Cytoplasmic and Nuclear (chemistry)</term>
<term>Receptors, G-Protein-Coupled (agonists)</term>
<term>Receptors, G-Protein-Coupled (chemistry)</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Canaux ioniques régulés par des ligands ()</term>
<term>Canaux ioniques régulés par des ligands (agonistes)</term>
<term>Conception de médicament</term>
<term>Conformation des protéines</term>
<term>Humains</term>
<term>Ligands</term>
<term>Maladie (génétique)</term>
<term>Modèles chimiques</term>
<term>Multimérisation de protéines</term>
<term>Mutation</term>
<term>Récepteurs couplés aux protéines G ()</term>
<term>Récepteurs couplés aux protéines G (agonistes)</term>
<term>Récepteurs cytoplasmiques et nucléaires ()</term>
<term>Récepteurs cytoplasmiques et nucléaires (agonistes)</term>
<term>Récepteurs à activité tyrosine kinase ()</term>
<term>Récepteurs à activité tyrosine kinase (agonistes)</term>
<term>Régulation allostérique</term>
<term>Site allostérique</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="agonists" xml:lang="en">
<term>Ligand-Gated Ion Channels</term>
<term>Receptor Protein-Tyrosine Kinases</term>
<term>Receptors, Cytoplasmic and Nuclear</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Ligand-Gated Ion Channels</term>
<term>Receptor Protein-Tyrosine Kinases</term>
<term>Receptors, Cytoplasmic and Nuclear</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" qualifier="agonistes" xml:lang="fr">
<term>Canaux ioniques régulés par des ligands</term>
<term>Récepteurs couplés aux protéines G</term>
<term>Récepteurs cytoplasmiques et nucléaires</term>
<term>Récepteurs à activité tyrosine kinase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Maladie</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Allosteric Regulation</term>
<term>Allosteric Site</term>
<term>Animals</term>
<term>Drug Design</term>
<term>Humans</term>
<term>Ligands</term>
<term>Models, Chemical</term>
<term>Mutation</term>
<term>Protein Conformation</term>
<term>Protein Multimerization</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Canaux ioniques régulés par des ligands</term>
<term>Conception de médicament</term>
<term>Conformation des protéines</term>
<term>Humains</term>
<term>Ligands</term>
<term>Modèles chimiques</term>
<term>Multimérisation de protéines</term>
<term>Mutation</term>
<term>Récepteurs couplés aux protéines G</term>
<term>Récepteurs cytoplasmiques et nucléaires</term>
<term>Récepteurs à activité tyrosine kinase</term>
<term>Régulation allostérique</term>
<term>Site allostérique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Four major receptor families enable cells to respond to chemical and physical signals from their proximal environment. The ligand- and voltage-gated ion channels, G-protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases are all allosteric proteins that carry multiple, spatially distinct, yet conformationally linked ligand-binding sites. Recent studies point to common mechanisms governing the allosteric transitions of these receptors, including the impact of oligomerization, pre-existing and functionally distinct conformational ensembles, intrinsically disordered regions, and the occurrence of allosteric modulatory sites. Importantly, synthetic allosteric modulators are being discovered for these receptors, providing an enriched, yet challenging, landscape for novel therapeutics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27565340</PMID>
<DateCreated>
<Year>2016</Year>
<Month>08</Month>
<Day>27</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1097-4172</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>166</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2016</Year>
<Month>Aug</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Cell</Title>
<ISOAbbreviation>Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation.</ArticleTitle>
<Pagination>
<MedlinePgn>1084-1102</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0092-8674(16)31064-9</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cell.2016.08.015</ELocationID>
<Abstract>
<AbstractText>Four major receptor families enable cells to respond to chemical and physical signals from their proximal environment. The ligand- and voltage-gated ion channels, G-protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases are all allosteric proteins that carry multiple, spatially distinct, yet conformationally linked ligand-binding sites. Recent studies point to common mechanisms governing the allosteric transitions of these receptors, including the impact of oligomerization, pre-existing and functionally distinct conformational ensembles, intrinsically disordered regions, and the occurrence of allosteric modulatory sites. Importantly, synthetic allosteric modulators are being discovered for these receptors, providing an enriched, yet challenging, landscape for novel therapeutics.</AbstractText>
<CopyrightInformation>Copyright © 2016 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Changeux</LastName>
<ForeName>Jean-Pierre</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Collège de France and CNRS URA 2182, Institut Pasteur, 75015 Paris, France. Electronic address: changeux@noos.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Christopoulos</LastName>
<ForeName>Arthur</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, VIC 3052 Parkville, Australia. Electronic address: arthur.christopoulos@monash.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell</MedlineTA>
<NlmUniqueID>0413066</NlmUniqueID>
<ISSNLinking>0092-8674</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058446">Ligand-Gated Ion Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018160">Receptors, Cytoplasmic and Nuclear</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D043562">Receptors, G-Protein-Coupled</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="D020794">Receptor Protein-Tyrosine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000494" MajorTopicYN="N">Allosteric Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000495" MajorTopicYN="N">Allosteric Site</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004194" MajorTopicYN="N">Disease</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015195" MajorTopicYN="N">Drug Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058446" MajorTopicYN="N">Ligand-Gated Ion Channels</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020794" MajorTopicYN="N">Receptor Protein-Tyrosine Kinases</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018160" MajorTopicYN="N">Receptors, Cytoplasmic and Nuclear</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043562" MajorTopicYN="N">Receptors, G-Protein-Coupled</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>03</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>08</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27565340</ArticleId>
<ArticleId IdType="pii">S0092-8674(16)31064-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.cell.2016.08.015</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A62 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001A62 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:27565340
   |texte=   Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:27565340" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024