Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Understanding the cation ordering transition in high-voltage spinel LiNi0.5Mn1.5O4 by doping Li instead of Ni.

Identifieur interne : 000937 ( PubMed/Curation ); précédent : 000936; suivant : 000938

Understanding the cation ordering transition in high-voltage spinel LiNi0.5Mn1.5O4 by doping Li instead of Ni.

Auteurs : Junghwa Lee [Corée du Sud] ; Nicolas Dupre [France] ; Maxim Avdeev [Australie] ; Byoungwoo Kang [Corée du Sud]

Source :

RBID : pubmed:28751751

Abstract

We determined how Li doping affects the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4(LNMO) by using neutron diffraction, TEM image, electrochemical measurements, and NMR data. The doped Li occupies empty octahedral interstitials (16c site) before the ordering transition, and can move to normal octahedral sites (16d (4b) site) after the transition. This movement strongly affects the Ni/Mn ordering transition because Li at 16c sites blocks the ordering transition pathway and Li at 16d (4b) sites affects electrostatic interactions with transition metals. As a result, Li doping increases in the Ni/Mn disordering without the effect of Mn(3+) ions even though the Li-doped LNMO undergoes order-disorder transition at 700 °C. Li doping can control the amount of Ni/Mn disordering in the spinel without the negative effect of Mn(3+) ions on the electrochemical property.

DOI: 10.1038/s41598-017-07139-2
PubMed: 28751751

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28751751

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Understanding the cation ordering transition in high-voltage spinel LiNi0.5Mn1.5O4 by doping Li instead of Ni.</title>
<author>
<name sortKey="Lee, Junghwa" sort="Lee, Junghwa" uniqKey="Lee J" first="Junghwa" last="Lee">Junghwa Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro. Nam-Gu., Pohang, 790-784, Gyeongsangbuk-do, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro. Nam-Gu., Pohang, 790-784, Gyeongsangbuk-do</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dupre, Nicolas" sort="Dupre, Nicolas" uniqKey="Dupre N" first="Nicolas" last="Dupre">Nicolas Dupre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322, Nantes Cedex 3, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322, Nantes Cedex 3</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Avdeev, Maxim" sort="Avdeev, Maxim" uniqKey="Avdeev M" first="Maxim" last="Avdeev">Maxim Avdeev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, DC, NSW 2232, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, DC, NSW 2232</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kang, Byoungwoo" sort="Kang, Byoungwoo" uniqKey="Kang B" first="Byoungwoo" last="Kang">Byoungwoo Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro. Nam-Gu., Pohang, 790-784, Gyeongsangbuk-do, South Korea. bwkang@postech.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro. Nam-Gu., Pohang, 790-784, Gyeongsangbuk-do</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28751751</idno>
<idno type="pmid">28751751</idno>
<idno type="doi">10.1038/s41598-017-07139-2</idno>
<idno type="wicri:Area/PubMed/Corpus">000940</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000940</idno>
<idno type="wicri:Area/PubMed/Curation">000937</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000937</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Understanding the cation ordering transition in high-voltage spinel LiNi0.5Mn1.5O4 by doping Li instead of Ni.</title>
<author>
<name sortKey="Lee, Junghwa" sort="Lee, Junghwa" uniqKey="Lee J" first="Junghwa" last="Lee">Junghwa Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro. Nam-Gu., Pohang, 790-784, Gyeongsangbuk-do, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro. Nam-Gu., Pohang, 790-784, Gyeongsangbuk-do</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dupre, Nicolas" sort="Dupre, Nicolas" uniqKey="Dupre N" first="Nicolas" last="Dupre">Nicolas Dupre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322, Nantes Cedex 3, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322, Nantes Cedex 3</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Avdeev, Maxim" sort="Avdeev, Maxim" uniqKey="Avdeev M" first="Maxim" last="Avdeev">Maxim Avdeev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, DC, NSW 2232, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, DC, NSW 2232</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kang, Byoungwoo" sort="Kang, Byoungwoo" uniqKey="Kang B" first="Byoungwoo" last="Kang">Byoungwoo Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro. Nam-Gu., Pohang, 790-784, Gyeongsangbuk-do, South Korea. bwkang@postech.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro. Nam-Gu., Pohang, 790-784, Gyeongsangbuk-do</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We determined how Li doping affects the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4(LNMO) by using neutron diffraction, TEM image, electrochemical measurements, and NMR data. The doped Li occupies empty octahedral interstitials (16c site) before the ordering transition, and can move to normal octahedral sites (16d (4b) site) after the transition. This movement strongly affects the Ni/Mn ordering transition because Li at 16c sites blocks the ordering transition pathway and Li at 16d (4b) sites affects electrostatic interactions with transition metals. As a result, Li doping increases in the Ni/Mn disordering without the effect of Mn(3+) ions even though the Li-doped LNMO undergoes order-disorder transition at 700 °C. Li doping can control the amount of Ni/Mn disordering in the spinel without the negative effect of Mn(3+) ions on the electrochemical property.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">28751751</PMID>
<DateCreated>
<Year>2017</Year>
<Month>07</Month>
<Day>28</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>08</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jul</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Understanding the cation ordering transition in high-voltage spinel LiNi0.5Mn1.5O4 by doping Li instead of Ni.</ArticleTitle>
<Pagination>
<MedlinePgn>6728</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-017-07139-2</ELocationID>
<Abstract>
<AbstractText>We determined how Li doping affects the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4(LNMO) by using neutron diffraction, TEM image, electrochemical measurements, and NMR data. The doped Li occupies empty octahedral interstitials (16c site) before the ordering transition, and can move to normal octahedral sites (16d (4b) site) after the transition. This movement strongly affects the Ni/Mn ordering transition because Li at 16c sites blocks the ordering transition pathway and Li at 16d (4b) sites affects electrostatic interactions with transition metals. As a result, Li doping increases in the Ni/Mn disordering without the effect of Mn(3+) ions even though the Li-doped LNMO undergoes order-disorder transition at 700 °C. Li doping can control the amount of Ni/Mn disordering in the spinel without the negative effect of Mn(3+) ions on the electrochemical property.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Junghwa</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro. Nam-Gu., Pohang, 790-784, Gyeongsangbuk-do, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dupre</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322, Nantes Cedex 3, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Avdeev</LastName>
<ForeName>Maxim</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2366-5809</Identifier>
<AffiliationInfo>
<Affiliation>Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, DC, NSW 2232, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Byoungwoo</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro. Nam-Gu., Pohang, 790-784, Gyeongsangbuk-do, South Korea. bwkang@postech.ac.kr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Chem Chem Phys. 2014 Feb 21;16(7):3282-91</RefSource>
<PMID Version="1">24413557</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2001 May 7;86(19):4314-7</RefSource>
<PMID Version="1">11328163</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Chem Chem Phys. 2012 Oct 21;14(39):13515-21</RefSource>
<PMID Version="1">22968196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2015 Jun 26;54(27):7963-7</RefSource>
<PMID Version="1">26013702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Mater. 2012 Apr 24;24(16):2109-16</RefSource>
<PMID Version="1">22431364</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7592-8</RefSource>
<PMID Version="1">23855720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Mater. 2012 Aug 14;24(15):2952-2964</RefSource>
<PMID Version="1">23002325</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>06</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28751751</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-017-07139-2</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-017-07139-2</ArticleId>
<ArticleId IdType="pmc">PMC5532243</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000937 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000937 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28751751
   |texte=   Understanding the cation ordering transition in high-voltage spinel LiNi0.5Mn1.5O4 by doping Li instead of Ni.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28751751" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024