Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites.

Identifieur interne : 000932 ( PubMed/Curation ); précédent : 000931; suivant : 000933

Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites.

Auteurs : Kristian E. Swearingen [États-Unis] ; Scott E. Lindner [États-Unis] ; Erika L. Flannery [États-Unis] ; Ashley M. Vaughan [États-Unis] ; Robert D. Morrison [États-Unis] ; Rapatbhorn Patrapuvich [Thaïlande] ; Cristian Koepfli [Australie] ; Ivo Muller [Australie] ; Aaron Jex [Australie] ; Robert L. Moritz [États-Unis] ; Stefan H I. Kappe [États-Unis] ; Jetsumon Sattabongkot [Thaïlande] ; Sebastian A. Mikolajczak [États-Unis]

Source :

RBID : pubmed:28759593

Descripteurs français

English descriptors

Abstract

Plasmodium falciparum and Plasmodium vivax cause the majority of human malaria cases. Research efforts predominantly focus on P. falciparum because of the clinical severity of infection and associated mortality rates. However, P. vivax malaria affects more people in a wider global range. Furthermore, unlike P. falciparum, P. vivax can persist in the liver as dormant hypnozoites that can be activated weeks to years after primary infection, causing relapse of symptomatic blood stages. This feature makes P. vivax unique and difficult to eliminate with the standard tools of vector control and treatment of symptomatic blood stage infection with antimalarial drugs. Infection by Plasmodium is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver. The most advanced malaria vaccine for P. falciparum (RTS,S, a subunit vaccine containing of a portion of the major sporozoite surface protein) conferred limited protection in Phase III trials, falling short of WHO-established vaccine efficacy goals. However, blocking the sporozoite stage of infection in P. vivax, before the establishment of the chronic liver infection, might be an effective malaria vaccine strategy to reduce the occurrence of relapsing blood stages. It is also thought that a multivalent vaccine comprising multiple sporozoite surface antigens will provide better protection, but a comprehensive analysis of proteins in P. vivax sporozoites is not available. To inform sporozoite-based vaccine development, we employed mass spectrometry-based proteomics to identify nearly 2,000 proteins present in P. vivax salivary gland sporozoites. Analysis of protein post-translational modifications revealed extensive phosphorylation of glideosome proteins as well as regulators of transcription and translation. Additionally, the sporozoite surface proteins CSP and TRAP, which were recently discovered to be glycosylated in P. falciparum salivary gland sporozoites, were also observed to be similarly modified in P. vivax sporozoites. Quantitative comparison of the P. vivax and P. falciparum salivary gland sporozoite proteomes revealed a high degree of similarity in protein expression levels, including among invasion-related proteins. Nevertheless, orthologs with significantly different expression levels between the two species could be identified, as well as highly abundant, species-specific proteins with no known orthologs. Finally, we employed chemical labeling of live sporozoites to isolate and identify 36 proteins that are putatively surface-exposed on P. vivax salivary gland sporozoites. In addition to identifying conserved sporozoite surface proteins identified by similar analyses of other Plasmodium species, our analysis identified several as-yet uncharacterized proteins, including a putative 6-Cys protein with no known ortholog in P. falciparum.

DOI: 10.1371/journal.pntd.0005791
PubMed: 28759593

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28759593

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites.</title>
<author>
<name sortKey="Swearingen, Kristian E" sort="Swearingen, Kristian E" uniqKey="Swearingen K" first="Kristian E" last="Swearingen">Kristian E. Swearingen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Systems Biology, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Systems Biology, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lindner, Scott E" sort="Lindner, Scott E" uniqKey="Lindner S" first="Scott E" last="Lindner">Scott E. Lindner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Flannery, Erika L" sort="Flannery, Erika L" uniqKey="Flannery E" first="Erika L" last="Flannery">Erika L. Flannery</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vaughan, Ashley M" sort="Vaughan, Ashley M" uniqKey="Vaughan A" first="Ashley M" last="Vaughan">Ashley M. Vaughan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Morrison, Robert D" sort="Morrison, Robert D" uniqKey="Morrison R" first="Robert D" last="Morrison">Robert D. Morrison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Patrapuvich, Rapatbhorn" sort="Patrapuvich, Rapatbhorn" uniqKey="Patrapuvich R" first="Rapatbhorn" last="Patrapuvich">Rapatbhorn Patrapuvich</name>
<affiliation wicri:level="1">
<nlm:affiliation>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Koepfli, Cristian" sort="Koepfli, Cristian" uniqKey="Koepfli C" first="Cristian" last="Koepfli">Cristian Koepfli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Muller, Ivo" sort="Muller, Ivo" uniqKey="Muller I" first="Ivo" last="Muller">Ivo Muller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jex, Aaron" sort="Jex, Aaron" uniqKey="Jex A" first="Aaron" last="Jex">Aaron Jex</name>
<affiliation wicri:level="1">
<nlm:affiliation>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moritz, Robert L" sort="Moritz, Robert L" uniqKey="Moritz R" first="Robert L" last="Moritz">Robert L. Moritz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Systems Biology, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Systems Biology, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kappe, Stefan H I" sort="Kappe, Stefan H I" uniqKey="Kappe S" first="Stefan H I" last="Kappe">Stefan H I. Kappe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sattabongkot, Jetsumon" sort="Sattabongkot, Jetsumon" uniqKey="Sattabongkot J" first="Jetsumon" last="Sattabongkot">Jetsumon Sattabongkot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mikolajczak, Sebastian A" sort="Mikolajczak, Sebastian A" uniqKey="Mikolajczak S" first="Sebastian A" last="Mikolajczak">Sebastian A. Mikolajczak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28759593</idno>
<idno type="pmid">28759593</idno>
<idno type="doi">10.1371/journal.pntd.0005791</idno>
<idno type="wicri:Area/PubMed/Corpus">000935</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000935</idno>
<idno type="wicri:Area/PubMed/Curation">000932</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000932</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites.</title>
<author>
<name sortKey="Swearingen, Kristian E" sort="Swearingen, Kristian E" uniqKey="Swearingen K" first="Kristian E" last="Swearingen">Kristian E. Swearingen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Systems Biology, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Systems Biology, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lindner, Scott E" sort="Lindner, Scott E" uniqKey="Lindner S" first="Scott E" last="Lindner">Scott E. Lindner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Flannery, Erika L" sort="Flannery, Erika L" uniqKey="Flannery E" first="Erika L" last="Flannery">Erika L. Flannery</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vaughan, Ashley M" sort="Vaughan, Ashley M" uniqKey="Vaughan A" first="Ashley M" last="Vaughan">Ashley M. Vaughan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Morrison, Robert D" sort="Morrison, Robert D" uniqKey="Morrison R" first="Robert D" last="Morrison">Robert D. Morrison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Patrapuvich, Rapatbhorn" sort="Patrapuvich, Rapatbhorn" uniqKey="Patrapuvich R" first="Rapatbhorn" last="Patrapuvich">Rapatbhorn Patrapuvich</name>
<affiliation wicri:level="1">
<nlm:affiliation>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Koepfli, Cristian" sort="Koepfli, Cristian" uniqKey="Koepfli C" first="Cristian" last="Koepfli">Cristian Koepfli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Muller, Ivo" sort="Muller, Ivo" uniqKey="Muller I" first="Ivo" last="Muller">Ivo Muller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jex, Aaron" sort="Jex, Aaron" uniqKey="Jex A" first="Aaron" last="Jex">Aaron Jex</name>
<affiliation wicri:level="1">
<nlm:affiliation>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Moritz, Robert L" sort="Moritz, Robert L" uniqKey="Moritz R" first="Robert L" last="Moritz">Robert L. Moritz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Systems Biology, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Systems Biology, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kappe, Stefan H I" sort="Kappe, Stefan H I" uniqKey="Kappe S" first="Stefan H I" last="Kappe">Stefan H I. Kappe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sattabongkot, Jetsumon" sort="Sattabongkot, Jetsumon" uniqKey="Sattabongkot J" first="Jetsumon" last="Sattabongkot">Jetsumon Sattabongkot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mikolajczak, Sebastian A" sort="Mikolajczak, Sebastian A" uniqKey="Mikolajczak S" first="Sebastian A" last="Mikolajczak">Sebastian A. Mikolajczak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Infectious Disease Research, Seattle, Washington</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS neglected tropical diseases</title>
<idno type="eISSN">1935-2735</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Anopheles (parasitology)</term>
<term>Malaria, Vivax (metabolism)</term>
<term>Mass Spectrometry</term>
<term>Membrane Proteins (analysis)</term>
<term>Plasmodium vivax (isolation & purification)</term>
<term>Protein Processing, Post-Translational</term>
<term>Proteogenomics</term>
<term>Proteome (analysis)</term>
<term>Protozoan Proteins (analysis)</term>
<term>Salivary Glands (parasitology)</term>
<term>Sporozoites (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Anopheles (parasitologie)</term>
<term>Glandes salivaires (parasitologie)</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Paludisme à Plasmodium vivax (métabolisme)</term>
<term>Plasmodium vivax (isolement et purification)</term>
<term>Protéines de protozoaire (analyse)</term>
<term>Protéines membranaires (analyse)</term>
<term>Protéogénomique</term>
<term>Protéome (analyse)</term>
<term>Spectrométrie de masse</term>
<term>Sporozoïtes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Membrane Proteins</term>
<term>Proteome</term>
<term>Protozoan Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Protéines de protozoaire</term>
<term>Protéines membranaires</term>
<term>Protéome</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Plasmodium vivax</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Plasmodium vivax</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Malaria, Vivax</term>
<term>Sporozoites</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Paludisme à Plasmodium vivax</term>
<term>Sporozoïtes</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Anopheles</term>
<term>Glandes salivaires</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Anopheles</term>
<term>Salivary Glands</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Mass Spectrometry</term>
<term>Protein Processing, Post-Translational</term>
<term>Proteogenomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Protéogénomique</term>
<term>Spectrométrie de masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plasmodium falciparum and Plasmodium vivax cause the majority of human malaria cases. Research efforts predominantly focus on P. falciparum because of the clinical severity of infection and associated mortality rates. However, P. vivax malaria affects more people in a wider global range. Furthermore, unlike P. falciparum, P. vivax can persist in the liver as dormant hypnozoites that can be activated weeks to years after primary infection, causing relapse of symptomatic blood stages. This feature makes P. vivax unique and difficult to eliminate with the standard tools of vector control and treatment of symptomatic blood stage infection with antimalarial drugs. Infection by Plasmodium is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver. The most advanced malaria vaccine for P. falciparum (RTS,S, a subunit vaccine containing of a portion of the major sporozoite surface protein) conferred limited protection in Phase III trials, falling short of WHO-established vaccine efficacy goals. However, blocking the sporozoite stage of infection in P. vivax, before the establishment of the chronic liver infection, might be an effective malaria vaccine strategy to reduce the occurrence of relapsing blood stages. It is also thought that a multivalent vaccine comprising multiple sporozoite surface antigens will provide better protection, but a comprehensive analysis of proteins in P. vivax sporozoites is not available. To inform sporozoite-based vaccine development, we employed mass spectrometry-based proteomics to identify nearly 2,000 proteins present in P. vivax salivary gland sporozoites. Analysis of protein post-translational modifications revealed extensive phosphorylation of glideosome proteins as well as regulators of transcription and translation. Additionally, the sporozoite surface proteins CSP and TRAP, which were recently discovered to be glycosylated in P. falciparum salivary gland sporozoites, were also observed to be similarly modified in P. vivax sporozoites. Quantitative comparison of the P. vivax and P. falciparum salivary gland sporozoite proteomes revealed a high degree of similarity in protein expression levels, including among invasion-related proteins. Nevertheless, orthologs with significantly different expression levels between the two species could be identified, as well as highly abundant, species-specific proteins with no known orthologs. Finally, we employed chemical labeling of live sporozoites to isolate and identify 36 proteins that are putatively surface-exposed on P. vivax salivary gland sporozoites. In addition to identifying conserved sporozoite surface proteins identified by similar analyses of other Plasmodium species, our analysis identified several as-yet uncharacterized proteins, including a putative 6-Cys protein with no known ortholog in P. falciparum.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28759593</PMID>
<DateCreated>
<Year>2017</Year>
<Month>07</Month>
<Day>31</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>08</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1935-2735</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>PLoS neglected tropical diseases</Title>
<ISOAbbreviation>PLoS Negl Trop Dis</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites.</ArticleTitle>
<Pagination>
<MedlinePgn>e0005791</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pntd.0005791</ELocationID>
<Abstract>
<AbstractText>Plasmodium falciparum and Plasmodium vivax cause the majority of human malaria cases. Research efforts predominantly focus on P. falciparum because of the clinical severity of infection and associated mortality rates. However, P. vivax malaria affects more people in a wider global range. Furthermore, unlike P. falciparum, P. vivax can persist in the liver as dormant hypnozoites that can be activated weeks to years after primary infection, causing relapse of symptomatic blood stages. This feature makes P. vivax unique and difficult to eliminate with the standard tools of vector control and treatment of symptomatic blood stage infection with antimalarial drugs. Infection by Plasmodium is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver. The most advanced malaria vaccine for P. falciparum (RTS,S, a subunit vaccine containing of a portion of the major sporozoite surface protein) conferred limited protection in Phase III trials, falling short of WHO-established vaccine efficacy goals. However, blocking the sporozoite stage of infection in P. vivax, before the establishment of the chronic liver infection, might be an effective malaria vaccine strategy to reduce the occurrence of relapsing blood stages. It is also thought that a multivalent vaccine comprising multiple sporozoite surface antigens will provide better protection, but a comprehensive analysis of proteins in P. vivax sporozoites is not available. To inform sporozoite-based vaccine development, we employed mass spectrometry-based proteomics to identify nearly 2,000 proteins present in P. vivax salivary gland sporozoites. Analysis of protein post-translational modifications revealed extensive phosphorylation of glideosome proteins as well as regulators of transcription and translation. Additionally, the sporozoite surface proteins CSP and TRAP, which were recently discovered to be glycosylated in P. falciparum salivary gland sporozoites, were also observed to be similarly modified in P. vivax sporozoites. Quantitative comparison of the P. vivax and P. falciparum salivary gland sporozoite proteomes revealed a high degree of similarity in protein expression levels, including among invasion-related proteins. Nevertheless, orthologs with significantly different expression levels between the two species could be identified, as well as highly abundant, species-specific proteins with no known orthologs. Finally, we employed chemical labeling of live sporozoites to isolate and identify 36 proteins that are putatively surface-exposed on P. vivax salivary gland sporozoites. In addition to identifying conserved sporozoite surface proteins identified by similar analyses of other Plasmodium species, our analysis identified several as-yet uncharacterized proteins, including a putative 6-Cys protein with no known ortholog in P. falciparum.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Swearingen</LastName>
<ForeName>Kristian E</ForeName>
<Initials>KE</Initials>
<AffiliationInfo>
<Affiliation>Institute for Systems Biology, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindner</LastName>
<ForeName>Scott E</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Flannery</LastName>
<ForeName>Erika L</ForeName>
<Initials>EL</Initials>
<AffiliationInfo>
<Affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vaughan</LastName>
<ForeName>Ashley M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morrison</LastName>
<ForeName>Robert D</ForeName>
<Initials>RD</Initials>
<AffiliationInfo>
<Affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patrapuvich</LastName>
<ForeName>Rapatbhorn</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koepfli</LastName>
<ForeName>Cristian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muller</LastName>
<ForeName>Ivo</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Malaria: Parasites & Hosts Unit, Institut Pasteur, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jex</LastName>
<ForeName>Aaron</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Population Health and Immunity Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moritz</LastName>
<ForeName>Robert L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Institute for Systems Biology, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kappe</LastName>
<ForeName>Stefan H I</ForeName>
<Initials>SHI</Initials>
<AffiliationInfo>
<Affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Global Health, University of Washington, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sattabongkot</LastName>
<ForeName>Jetsumon</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mikolajczak</LastName>
<ForeName>Sebastian A</ForeName>
<Initials>SA</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1996-9703</Identifier>
<AffiliationInfo>
<Affiliation>Center for Infectious Disease Research, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Negl Trop Dis</MedlineTA>
<NlmUniqueID>101291488</NlmUniqueID>
<ISSNLinking>1935-2727</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015800">Protozoan Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6692-7</RefSource>
<PMID Version="1">22493233</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2014 Sep 23;15(9):459</RefSource>
<PMID Version="1">25244985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Infect Immun. 2014 Nov;82(11):4643-53</RefSource>
<PMID Version="1">25156733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2012 Nov 26;13(11):R108</RefSource>
<PMID Version="1">23181666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2001 Jan 19;305(3):567-80</RefSource>
<PMID Version="1">11152613</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 2002 Oct 15;74(20):5383-92</RefSource>
<PMID Version="1">12403597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2010 Jul;9(7):1437-48</RefSource>
<PMID Version="1">20332084</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4862-7</RefSource>
<PMID Version="1">24639528</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2013 Oct 3;369(14):1381-2</RefSource>
<PMID Version="1">24088113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Negl Trop Dis. 2016 Oct 19;10 (10 ):e0005070</RefSource>
<PMID Version="1">27760143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2015 Jan;43(Database issue):D707-13</RefSource>
<PMID Version="1">25510499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parasitology. 2011 Sep;138(11):1341-53</RefSource>
<PMID Version="1">21816124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Oct 3;419(6906):520-6</RefSource>
<PMID Version="1">12368866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteomics. 2011 Aug 24;74(9):1701-10</RefSource>
<PMID Version="1">21515433</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 2010 Mar 15;82(6):2272-81</RefSource>
<PMID Version="1">20166708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glycobiology. 2006 Dec;16(12):1194-206</RefSource>
<PMID Version="1">16899492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Analyst. 2006 Dec;131(12):1335-41</RefSource>
<PMID Version="1">17124542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parasitology. 2012 Aug;139(9):1131-45</RefSource>
<PMID Version="1">22336136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Expert Rev Vaccines. 2011 May;10(5):589-99</RefSource>
<PMID Version="1">21604980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glycobiology. 2007 Aug;17(8):868-76</RefSource>
<PMID Version="1">17494086</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2015 Oct 31;14:427</RefSource>
<PMID Version="1">26520586</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Parasitol. 2010 Mar;26(3):145-51</RefSource>
<PMID Version="1">20133198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteome Res. 2014 Sep 5;13(9):3966-78</RefSource>
<PMID Version="1">25117199</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Jan 20;287(4):2410-22</RefSource>
<PMID Version="1">22139844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1994 Nov 22;33(46):13524-30</RefSource>
<PMID Version="1">7947762</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteome Res. 2013 Sep 6;12(9):4028-45</RefSource>
<PMID Version="1">23914800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1982 Aug 17;21(17):3950-5</RefSource>
<PMID Version="1">7126526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2011 Sep 29;8(10):785-6</RefSource>
<PMID Version="1">21959131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 2010 Dec 4;376(9756):1883-5</RefSource>
<PMID Version="1">21035840</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2003 Sep 12;301(5639):1503-8</RefSource>
<PMID Version="1">12893887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 1997 Sep 29;352(1359):1361-7</RefSource>
<PMID Version="1">9355128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2011 Oct 11;10:297</RefSource>
<PMID Version="1">21989376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2005 Oct;4(10):1487-502</RefSource>
<PMID Version="1">15979981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Parasitol. 2012;80:113-50</RefSource>
<PMID Version="1">23199487</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Oct 3;419(6906):498-511</RefSource>
<PMID Version="1">12368864</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2012 Dec 17;11:421</RefSource>
<PMID Version="1">23244590</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Parasitol. 2017 Apr;33(4):260-263</RefSource>
<PMID Version="1">28077251</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2013;4:2552</RefSource>
<PMID Version="1">24108241</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Dec 1;281(48):36742-51</RefSource>
<PMID Version="1">17032646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Infect Dis. 2009 Oct;22(5):430-5</RefSource>
<PMID Version="1">19571748</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2011 Nov 29;2:565</RefSource>
<PMID Version="1">22127061</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2010 Mar;1804(3):604-12</RefSource>
<PMID Version="1">19840874</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parasitol Res. 2011 May;108(5):1275-82</RefSource>
<PMID Version="1">21318386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2013 Sep;12(9):2383-93</RefSource>
<PMID Version="1">23720762</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 May 15;109(20):7817-22</RefSource>
<PMID Version="1">22547819</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Jan 7;307(5706):82-6</RefSource>
<PMID Version="1">15637271</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2011 May;10(5):M110.001636</RefSource>
<PMID Version="1">20943600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2015 Feb 20;347(6224):847-53</RefSource>
<PMID Version="1">25700513</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteome Res. 2012 Nov 2;11(11):5323-37</RefSource>
<PMID Version="1">23025827</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2016 Apr 29;12 (4):e1005606</RefSource>
<PMID Version="1">27128092</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Malar J. 2012 Aug 17;11:280</RefSource>
<PMID Version="1">22900786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2016 Jul 27;44(13):6087-101</RefSource>
<PMID Version="1">27298255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2015 Aug;15(15):2716-29</RefSource>
<PMID Version="1">25886026</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Top Med Chem. 2012;12(5):456-72</RefSource>
<PMID Version="1">22242850</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Negl Trop Dis. 2016 Feb 26;10(2):e0004423</RefSource>
<PMID Version="1">26919472</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sci Rep. 2017 Jan 09;7:40407</RefSource>
<PMID Version="1">28067322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteome Res. 2006 Sep;5(9):2339-47</RefSource>
<PMID Version="1">16944946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2012;13 Suppl 16:S5</RefSource>
<PMID Version="1">23176322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2016 Dec;16(23 ):2967-2976</RefSource>
<PMID Version="1">27714937</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Host Microbe. 2013 Jan 16;13(1):29-41</RefSource>
<PMID Version="1">23332154</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Host Microbe. 2016 Dec 14;20(6):731-743</RefSource>
<PMID Version="1">27978434</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 May 14;285(20):15065-75</RefSource>
<PMID Version="1">20208072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 2003 Sep 1;75(17):4646-58</RefSource>
<PMID Version="1">14632076</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biochem Parasitol. 2004 May;135(1):1-11</RefSource>
<PMID Version="1">15287581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21420-5</RefSource>
<PMID Version="1">23236185</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteomics. 2014 Oct 12;113C:268-280</RefSource>
<PMID Version="1">25316051</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Wellcome Open Res. 2016 Nov 15;1:4</RefSource>
<PMID Version="1">28008421</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2008 Nov 1;24(21):2534-6</RefSource>
<PMID Version="1">18606607</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Mar 2;276(9):6485-98</RefSource>
<PMID Version="1">11067851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Negl Trop Dis. 2017 Jan 12;11(1):e0005164</RefSource>
<PMID Version="1">28081149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2008 Sep 23;9:392</RefSource>
<PMID Version="1">18811934</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2011 Apr;11(7):1340-5</RefSource>
<PMID Version="1">21360675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2009 Mar;5(3):e1000322</RefSource>
<PMID Version="1">19283086</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Oct 9;455(7214):757-63</RefSource>
<PMID Version="1">18843361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2013 May;12(5):1127-43</RefSource>
<PMID Version="1">23325771</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2009 Jan;37(Database issue):D539-43</RefSource>
<PMID Version="1">18957442</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Microbiol Rev. 2011 Apr;24(2):377-410</RefSource>
<PMID Version="1">21482730</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2001 Apr 12;410(6830):839-42</RefSource>
<PMID Version="1">11298455</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Rapid Commun Mass Spectrom. 2001;15(10):771-7</RefSource>
<PMID Version="1">11344537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Soc Mass Spectrom. 2011 Dec;22(12):2199-208</RefSource>
<PMID Version="1">21952779</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2008 Oct;4(10):e1000195</RefSource>
<PMID Version="1">18974882</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Expert Opin Ther Targets. 2007 Mar;11(3):279-90</RefSource>
<PMID Version="1">17298288</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Negl Trop Dis. 2015 Mar 17;9(3):e0003595</RefSource>
<PMID Version="1">25780913</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Host Microbe. 2011 Oct 20;10(4):410-9</RefSource>
<PMID Version="1">22018241</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2009 Oct 30;284(44):30004-15</RefSource>
<PMID Version="1">19671700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2013 Jan;13(1):22-4</RefSource>
<PMID Version="1">23148064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics Clin Appl. 2009 Nov;3(11):1314-25</RefSource>
<PMID Version="1">21136953</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics Clin Appl. 2015 Aug;9(7-8):745-54</RefSource>
<PMID Version="1">25631240</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000852" MajorTopicYN="N">Anopheles</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016780" MajorTopicYN="N">Malaria, Vivax</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010966" MajorTopicYN="N">Plasmodium vivax</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071696" MajorTopicYN="N">Proteogenomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015800" MajorTopicYN="N">Protozoan Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012469" MajorTopicYN="N">Salivary Glands</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034101" MajorTopicYN="N">Sporozoites</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28759593</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pntd.0005791</ArticleId>
<ArticleId IdType="pii">PNTD-D-17-00343</ArticleId>
<ArticleId IdType="pmc">PMC5552340</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000932 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000932 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28759593
   |texte=   Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28759593" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024