Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ferrotoroidic ground state in a heterometallic {Cr(III)Dy(III)6} complex displaying slow magnetic relaxation.

Identifieur interne : 000368 ( PubMed/Curation ); précédent : 000367; suivant : 000369

Ferrotoroidic ground state in a heterometallic {Cr(III)Dy(III)6} complex displaying slow magnetic relaxation.

Auteurs : Kuduva R. Vignesh [Inde] ; Alessandro Soncini [Australie] ; Stuart K. Langley [Royaume-Uni] ; Wolfgang Wernsdorfer [Allemagne] ; Keith S. Murray [Australie] ; Gopalan Rajaraman [Inde]

Source :

RBID : pubmed:29044098

Abstract

Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto-electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr(III)Dy(III)6} complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr(III)Dy(III)6} reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.

DOI: 10.1038/s41467-017-01102-5
PubMed: 29044098

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29044098

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ferrotoroidic ground state in a heterometallic {Cr(III)Dy(III)6} complex displaying slow magnetic relaxation.</title>
<author>
<name sortKey="Vignesh, Kuduva R" sort="Vignesh, Kuduva R" uniqKey="Vignesh K" first="Kuduva R" last="Vignesh">Kuduva R. Vignesh</name>
<affiliation wicri:level="1">
<nlm:affiliation>IITB-Monash Research Academy, IIT Bombay, Mumbai, 400076, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>IITB-Monash Research Academy, IIT Bombay, Mumbai, 400076</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Soncini, Alessandro" sort="Soncini, Alessandro" uniqKey="Soncini A" first="Alessandro" last="Soncini">Alessandro Soncini</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry, University of Melbourne, Melbourne, VIC, 3010, Australia. asoncini@unimelb.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry, University of Melbourne, Melbourne, VIC, 3010</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Langley, Stuart K" sort="Langley, Stuart K" uniqKey="Langley S" first="Stuart K" last="Langley">Stuart K. Langley</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester, M15 6BH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester, M15 6BH</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wernsdorfer, Wolfgang" sort="Wernsdorfer, Wolfgang" uniqKey="Wernsdorfer W" first="Wolfgang" last="Wernsdorfer">Wolfgang Wernsdorfer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute Neel, CNRS, F-38000 Grenoble, France and Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute Neel, CNRS, F-38000 Grenoble, France and Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Murray, Keith S" sort="Murray, Keith S" uniqKey="Murray K" first="Keith S" last="Murray">Keith S. Murray</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia. keith.murray@monash.edu.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry, Monash University, Melbourne, VIC, 3800</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rajaraman, Gopalan" sort="Rajaraman, Gopalan" uniqKey="Rajaraman G" first="Gopalan" last="Rajaraman">Gopalan Rajaraman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. rajaraman@chem.iitb.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29044098</idno>
<idno type="pmid">29044098</idno>
<idno type="doi">10.1038/s41467-017-01102-5</idno>
<idno type="wicri:Area/PubMed/Corpus">000370</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000370</idno>
<idno type="wicri:Area/PubMed/Curation">000368</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000368</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ferrotoroidic ground state in a heterometallic {Cr(III)Dy(III)6} complex displaying slow magnetic relaxation.</title>
<author>
<name sortKey="Vignesh, Kuduva R" sort="Vignesh, Kuduva R" uniqKey="Vignesh K" first="Kuduva R" last="Vignesh">Kuduva R. Vignesh</name>
<affiliation wicri:level="1">
<nlm:affiliation>IITB-Monash Research Academy, IIT Bombay, Mumbai, 400076, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>IITB-Monash Research Academy, IIT Bombay, Mumbai, 400076</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Soncini, Alessandro" sort="Soncini, Alessandro" uniqKey="Soncini A" first="Alessandro" last="Soncini">Alessandro Soncini</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry, University of Melbourne, Melbourne, VIC, 3010, Australia. asoncini@unimelb.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry, University of Melbourne, Melbourne, VIC, 3010</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Langley, Stuart K" sort="Langley, Stuart K" uniqKey="Langley S" first="Stuart K" last="Langley">Stuart K. Langley</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester, M15 6BH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester, M15 6BH</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wernsdorfer, Wolfgang" sort="Wernsdorfer, Wolfgang" uniqKey="Wernsdorfer W" first="Wolfgang" last="Wernsdorfer">Wolfgang Wernsdorfer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute Neel, CNRS, F-38000 Grenoble, France and Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute Neel, CNRS, F-38000 Grenoble, France and Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Murray, Keith S" sort="Murray, Keith S" uniqKey="Murray K" first="Keith S" last="Murray">Keith S. Murray</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia. keith.murray@monash.edu.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Chemistry, Monash University, Melbourne, VIC, 3800</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rajaraman, Gopalan" sort="Rajaraman, Gopalan" uniqKey="Rajaraman G" first="Gopalan" last="Rajaraman">Gopalan Rajaraman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. rajaraman@chem.iitb.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto-electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr(III)Dy(III)6} complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr(III)Dy(III)6} reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">29044098</PMID>
<DateCreated>
<Year>2017</Year>
<Month>10</Month>
<Day>18</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>10</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Oct</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Ferrotoroidic ground state in a heterometallic {Cr(III)Dy(III)6} complex displaying slow magnetic relaxation.</ArticleTitle>
<Pagination>
<MedlinePgn>1023</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41467-017-01102-5</ELocationID>
<Abstract>
<AbstractText>Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto-electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr(III)Dy(III)6} complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr(III)Dy(III)6} reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vignesh</LastName>
<ForeName>Kuduva R</ForeName>
<Initials>KR</Initials>
<AffiliationInfo>
<Affiliation>IITB-Monash Research Academy, IIT Bombay, Mumbai, 400076, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Soncini</LastName>
<ForeName>Alessandro</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6779-7304</Identifier>
<AffiliationInfo>
<Affiliation>School of Chemistry, University of Melbourne, Melbourne, VIC, 3010, Australia. asoncini@unimelb.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Langley</LastName>
<ForeName>Stuart K</ForeName>
<Initials>SK</Initials>
<AffiliationInfo>
<Affiliation>School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester, M15 6BH, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wernsdorfer</LastName>
<ForeName>Wolfgang</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Institute Neel, CNRS, F-38000 Grenoble, France and Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Murray</LastName>
<ForeName>Keith S</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia. keith.murray@monash.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rajaraman</LastName>
<ForeName>Gopalan</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. rajaraman@chem.iitb.ac.in.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2008 Jun 20;100(24):247205</RefSource>
<PMID Version="1">18643625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Inorg Chem. 2010 Dec 20;49(24):11587-94</RefSource>
<PMID Version="1">21070004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Dec 10;330(6010):1510-2</RefSource>
<PMID Version="1">21051597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem A. 2008 Nov 13;112(45):11431-5</RefSource>
<PMID Version="1">18928264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Phys. 2012 Aug 14;137(6):064112</RefSource>
<PMID Version="1">22897260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Inorg Chem. 1998 Oct 19;37(21):5575-5582</RefSource>
<PMID Version="1">11670704</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2005 Jul 29;95(5):057205</RefSource>
<PMID Version="1">16090916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chemistry. 2015 Oct 26;21(44):15639-50</RefSource>
<PMID Version="1">26383786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2013 Nov 11;52(46):12014-9</RefSource>
<PMID Version="1">24105970</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chemistry. 2015 Nov 9;21(46):16364-9</RefSource>
<PMID Version="1">26403264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chemistry. 2006 Apr 3;12(11):3162-7</RefSource>
<PMID Version="1">16453356</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2010 Aug 23;49(36):6352-6</RefSource>
<PMID Version="1">20661979</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Commun (Camb). 2010 Nov 7;46(41):7787-9</RefSource>
<PMID Version="1">20856963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Inorg Chem. 2014 Oct 20;53(20):10835-45</RefSource>
<PMID Version="1">25259840</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2014 Oct 13;5:5243</RefSource>
<PMID Version="1">25308160</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2003 Jan 20;42(3):268-97</RefSource>
<PMID Version="1">12548682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Synchrotron Radiat. 2015 Jan;22(1):187-90</RefSource>
<PMID Version="1">25537608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Soc Rev. 2014;43(20):6894-905</RefSource>
<PMID Version="1">24975197</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Inorg Chem. 2017 Mar 6;56(5):2518-2532</RefSource>
<PMID Version="1">28211682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Inorg Chem. 2012 Feb 6;51(3):1233-5</RefSource>
<PMID Version="1">22239617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):401-6</RefSource>
<PMID Version="1">12409628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Commun (Camb). 2016 Sep 21;52(73):10976-9</RefSource>
<PMID Version="1">27532688</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Commun (Camb). 2014 Aug 18;50(64):8838-41</RefSource>
<PMID Version="1">24824019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2008;47(22):4126-9</RefSource>
<PMID Version="1">18428177</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2006 Mar 3;45(11):1729-33</RefSource>
<PMID Version="1">16496432</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Commun (Camb). 2009 Mar 7;(9):1100-2</RefSource>
<PMID Version="1">19225649</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2008 Nov 21;101(21):217201</RefSource>
<PMID Version="1">19113446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2012 Nov 14;134(45):18554-7</RefSource>
<PMID Version="1">23110698</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2010 Jul 12;49(30):5185-8</RefSource>
<PMID Version="1">20712035</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2012 Dec 14;51(51):12767-71</RefSource>
<PMID Version="1">23143895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr A. 2008 Jan;64(Pt 1):112-22</RefSource>
<PMID Version="1">18156677</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Inorg Chem. 2012 Nov 5;51(21):11873-81</RefSource>
<PMID Version="1">23072350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Commun (Camb). 2015 Dec 28;51(100):17732-5</RefSource>
<PMID Version="1">26490382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2010 Oct 4;49(41):7583-7</RefSource>
<PMID Version="1">20814995</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29044098</ArticleId>
<ArticleId IdType="doi">10.1038/s41467-017-01102-5</ArticleId>
<ArticleId IdType="pii">10.1038/s41467-017-01102-5</ArticleId>
<ArticleId IdType="pmc">PMC5647347</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000368 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000368 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29044098
   |texte=   Ferrotoroidic ground state in a heterometallic {Cr(III)Dy(III)6} complex displaying slow magnetic relaxation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:29044098" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024