Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synchrotron imaging and Markov Chain Monte Carlo reveal tooth mineralization patterns.

Identifieur interne : 000251 ( PubMed/Curation ); précédent : 000250; suivant : 000252

Synchrotron imaging and Markov Chain Monte Carlo reveal tooth mineralization patterns.

Auteurs : Daniel R. Green [États-Unis] ; Gregory M. Green [États-Unis] ; Albert S. Colman [États-Unis] ; Felicitas B. Bidlack [États-Unis] ; Paul Tafforeau [France] ; Tanya M. Smith [États-Unis]

Source :

RBID : pubmed:29049333

Abstract

The progressive character of tooth formation records aspects of mammalian life history, diet, seasonal behavior and climate. Tooth mineralization occurs in two stages: secretion and maturation, which overlap to some degree. Despite decades of study, the spatial and temporal pattern of elemental incorporation during enamel mineralization remains poorly characterized. Here we use synchrotron X-ray microtomography and Markov Chain Monte Carlo sampling to estimate mineralization patterns from an ontogenetic series of sheep molars (n = 45 M1s, 18 M2s). We adopt a Bayesian approach that posits a general pattern of maturation estimated from individual- and population-level mineral density variation over time. This approach converts static images of mineral density into a dynamic model of mineralization, and demonstrates that enamel secretion and maturation waves advance at nonlinear rates with distinct geometries. While enamel secretion is ordered, maturation geometry varies within a population and appears to be driven by diffusive processes. Our model yields concrete expectations for the integration of physiological and environmental signals, which is of particular significance for paleoseasonality research. This study also provides an avenue for characterizing mineralization patterns in other taxa. Our synchrotron imaging data and model are available for application to multiple disciplines, including health, material science, and paleontological research.

DOI: 10.1371/journal.pone.0186391
PubMed: 29049333

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29049333

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synchrotron imaging and Markov Chain Monte Carlo reveal tooth mineralization patterns.</title>
<author>
<name sortKey="Green, Daniel R" sort="Green, Daniel R" uniqKey="Green D" first="Daniel R" last="Green">Daniel R. Green</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Green, Gregory M" sort="Green, Gregory M" uniqKey="Green G" first="Gregory M" last="Green">Gregory M. Green</name>
<affiliation wicri:level="1">
<nlm:affiliation>Physics Department, Stanford University, Palo Alto, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Physics Department, Stanford University, Palo Alto, California</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Colman, Albert S" sort="Colman, Albert S" uniqKey="Colman A" first="Albert S" last="Colman">Albert S. Colman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bidlack, Felicitas B" sort="Bidlack, Felicitas B" uniqKey="Bidlack F" first="Felicitas B" last="Bidlack">Felicitas B. Bidlack</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forsyth Institute, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forsyth Institute, Cambridge, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tafforeau, Paul" sort="Tafforeau, Paul" uniqKey="Tafforeau P" first="Paul" last="Tafforeau">Paul Tafforeau</name>
<affiliation wicri:level="1">
<nlm:affiliation>European Synchrotron Radiation Facility, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>European Synchrotron Radiation Facility, Grenoble</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Smith, Tanya M" sort="Smith, Tanya M" uniqKey="Smith T" first="Tanya M" last="Smith">Tanya M. Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29049333</idno>
<idno type="pmid">29049333</idno>
<idno type="doi">10.1371/journal.pone.0186391</idno>
<idno type="wicri:Area/PubMed/Corpus">000253</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000253</idno>
<idno type="wicri:Area/PubMed/Curation">000251</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000251</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synchrotron imaging and Markov Chain Monte Carlo reveal tooth mineralization patterns.</title>
<author>
<name sortKey="Green, Daniel R" sort="Green, Daniel R" uniqKey="Green D" first="Daniel R" last="Green">Daniel R. Green</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Green, Gregory M" sort="Green, Gregory M" uniqKey="Green G" first="Gregory M" last="Green">Gregory M. Green</name>
<affiliation wicri:level="1">
<nlm:affiliation>Physics Department, Stanford University, Palo Alto, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Physics Department, Stanford University, Palo Alto, California</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Colman, Albert S" sort="Colman, Albert S" uniqKey="Colman A" first="Albert S" last="Colman">Albert S. Colman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bidlack, Felicitas B" sort="Bidlack, Felicitas B" uniqKey="Bidlack F" first="Felicitas B" last="Bidlack">Felicitas B. Bidlack</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forsyth Institute, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forsyth Institute, Cambridge, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tafforeau, Paul" sort="Tafforeau, Paul" uniqKey="Tafforeau P" first="Paul" last="Tafforeau">Paul Tafforeau</name>
<affiliation wicri:level="1">
<nlm:affiliation>European Synchrotron Radiation Facility, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>European Synchrotron Radiation Facility, Grenoble</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Smith, Tanya M" sort="Smith, Tanya M" uniqKey="Smith T" first="Tanya M" last="Smith">Tanya M. Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The progressive character of tooth formation records aspects of mammalian life history, diet, seasonal behavior and climate. Tooth mineralization occurs in two stages: secretion and maturation, which overlap to some degree. Despite decades of study, the spatial and temporal pattern of elemental incorporation during enamel mineralization remains poorly characterized. Here we use synchrotron X-ray microtomography and Markov Chain Monte Carlo sampling to estimate mineralization patterns from an ontogenetic series of sheep molars (n = 45 M1s, 18 M2s). We adopt a Bayesian approach that posits a general pattern of maturation estimated from individual- and population-level mineral density variation over time. This approach converts static images of mineral density into a dynamic model of mineralization, and demonstrates that enamel secretion and maturation waves advance at nonlinear rates with distinct geometries. While enamel secretion is ordered, maturation geometry varies within a population and appears to be driven by diffusive processes. Our model yields concrete expectations for the integration of physiological and environmental signals, which is of particular significance for paleoseasonality research. This study also provides an avenue for characterizing mineralization patterns in other taxa. Our synchrotron imaging data and model are available for application to multiple disciplines, including health, material science, and paleontological research.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">29049333</PMID>
<DateCreated>
<Year>2017</Year>
<Month>10</Month>
<Day>19</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Synchrotron imaging and Markov Chain Monte Carlo reveal tooth mineralization patterns.</ArticleTitle>
<Pagination>
<MedlinePgn>e0186391</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0186391</ELocationID>
<Abstract>
<AbstractText>The progressive character of tooth formation records aspects of mammalian life history, diet, seasonal behavior and climate. Tooth mineralization occurs in two stages: secretion and maturation, which overlap to some degree. Despite decades of study, the spatial and temporal pattern of elemental incorporation during enamel mineralization remains poorly characterized. Here we use synchrotron X-ray microtomography and Markov Chain Monte Carlo sampling to estimate mineralization patterns from an ontogenetic series of sheep molars (n = 45 M1s, 18 M2s). We adopt a Bayesian approach that posits a general pattern of maturation estimated from individual- and population-level mineral density variation over time. This approach converts static images of mineral density into a dynamic model of mineralization, and demonstrates that enamel secretion and maturation waves advance at nonlinear rates with distinct geometries. While enamel secretion is ordered, maturation geometry varies within a population and appears to be driven by diffusive processes. Our model yields concrete expectations for the integration of physiological and environmental signals, which is of particular significance for paleoseasonality research. This study also provides an avenue for characterizing mineralization patterns in other taxa. Our synchrotron imaging data and model are available for application to multiple disciplines, including health, material science, and paleontological research.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Green</LastName>
<ForeName>Daniel R</ForeName>
<Initials>DR</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9817-541X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Forsyth Institute, Cambridge, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Green</LastName>
<ForeName>Gregory M</ForeName>
<Initials>GM</Initials>
<AffiliationInfo>
<Affiliation>Physics Department, Stanford University, Palo Alto, California, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Kavli Institute for Particle Physics and Cosmology, Stanford University, Palo Alto, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Colman</LastName>
<ForeName>Albert S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bidlack</LastName>
<ForeName>Felicitas B</ForeName>
<Initials>FB</Initials>
<AffiliationInfo>
<Affiliation>Forsyth Institute, Cambridge, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tafforeau</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>European Synchrotron Radiation Facility, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Tanya M</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Australian Research Center for Human Evolution, Griffith University, Brisbane, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2006 Nov 10;314(5801):980-2</RefSource>
<PMID Version="1">17095699</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Oct 26;480(7378):513-5</RefSource>
<PMID Version="1">22031326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dent Res. 2011 Jan;90(1):18-30</RefSource>
<PMID Version="1">20858779</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013 Sep 06;8(9):e74597</RefSource>
<PMID Version="1">24040293</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2017 Feb 14;12 (2):e0171424</RefSource>
<PMID Version="1">28196135</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 2017 Jul 1;97(3):939-993</RefSource>
<PMID Version="1">28468833</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anat. 2006 Jan;208(1):99-113</RefSource>
<PMID Version="1">16420383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sci Adv. 2017 May 17;3(5):e1601517</RefSource>
<PMID Version="1">28560319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2013 Oct;31(10):908-15</RefSource>
<PMID Version="1">24013196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Hum Biol. 2014 Jul-Aug;41(4):348-57</RefSource>
<PMID Version="1">24932748</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2010 Dec;299(6):C1299-307</RefSource>
<PMID Version="1">20844245</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dent Res. 1982 Dec;Spec No:1532-42</RefSource>
<PMID Version="1">6958712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tissue Eng Part B Rev. 2015 Oct;21(5):438-50</RefSource>
<PMID Version="1">25905922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2013 Jun 13;498(7453):216-9</RefSource>
<PMID Version="1">23698370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Hum Evol. 2008 Feb;54(2):205-24</RefSource>
<PMID Version="1">18045649</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Oral Sci. 2012 Sep;4(3):129-34</RefSource>
<PMID Version="1">22996272</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nanomedicine (Lond). 2011 Sep;6(7):1159-73</RefSource>
<PMID Version="1">21707299</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bone. 2014 Mar;60:227-34</RefSource>
<PMID Version="1">24373736</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2015 Jul 31;349(6247):aaa6760</RefSource>
<PMID Version="1">26228157</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Mater. 2010 Dec;9(12):960-1</RefSource>
<PMID Version="1">21102512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dent Res. 2007 Aug;86(8):758-63</RefSource>
<PMID Version="1">17652206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur Arch Paediatr Dent. 2010 Apr;11(2):59-64</RefSource>
<PMID Version="1">20403299</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6088-93</RefSource>
<PMID Version="1">22492931</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Crit Rev Oral Biol Med. 1998;9(2):128-61</RefSource>
<PMID Version="1">9603233</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Analyst. 2009 Jan;134(1):72-9</RefSource>
<PMID Version="1">19082177</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Struct Biol. 2009 May;166(2):133-43</RefSource>
<PMID Version="1">19217943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Int. 2015 Oct;83:137-45</RefSource>
<PMID Version="1">26134987</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2009 Feb 10;7(2):e31</RefSource>
<PMID Version="1">19215146</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Phys. 2002 Nov;29(11):2672-81</RefSource>
<PMID Version="1">12462734</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 May 5;106(18):7289-93</RefSource>
<PMID Version="1">19365079</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Connect Tissue Res. 1998;38(1-4):101-11; discussion 139-45</RefSource>
<PMID Version="1">11063019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Dent Res. 1989 Sep;3(2):188-98</RefSource>
<PMID Version="1">2640430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2015 Oct 21;137(41):13325-33</RefSource>
<PMID Version="1">26403582</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29049333</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0186391</ArticleId>
<ArticleId IdType="pii">PONE-D-17-13008</ArticleId>
<ArticleId IdType="pmc">PMC5648163</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000251 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000251 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29049333
   |texte=   Synchrotron imaging and Markov Chain Monte Carlo reveal tooth mineralization patterns.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:29049333" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024