Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanoparticle radio-enhancement: principles, progress and application to cancer treatment.

Identifieur interne : 000020 ( PubMed/Curation ); précédent : 000019; suivant : 000021

Nanoparticle radio-enhancement: principles, progress and application to cancer treatment.

Auteurs : Zdenka Kuncic [Australie] ; Sandrine Lacombe [France]

Source :

RBID : pubmed:29125831

Abstract

Enhancement of radiation effects by high-atomic number nanoparticles (NPs) has been increasingly studied for its potential to improve radiotherapeutic efficacy. The underlying principle of NP radio-enhancement is the potential to release copious electrons into a nanoscale volume, thereby amplifying radiation-induced biological damage. While the vast majority of studies to date have focused on gold nanoparticles with photon radiation, an increasing number of experimental, theoretical and simulation studies have explored opportunities offered by other NPs (e.g. gadolinium, platinum, iron oxide, hafnium) and other therapeutic radiation sources such as ion beams. It is thus of interest to the research community to consolidate findings from the different studies and summarise progress to date, as well as to identify strategies that offer promising opportunities for clinical translation. This is the purpose of this Topical Review.

DOI: 10.1088/1361-6560/aa99ce
PubMed: 29125831

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29125831

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nanoparticle radio-enhancement: principles, progress and application to cancer treatment.</title>
<author>
<name sortKey="Kuncic, Zdenka" sort="Kuncic, Zdenka" uniqKey="Kuncic Z" first="Zdenka" last="Kuncic">Zdenka Kuncic</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Physics A28, University of Sydney, University of Sydney, Sydney, New South Wales, 2006, AUSTRALIA.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Australie</country>
<wicri:regionArea>School of Physics A28, University of Sydney, University of Sydney, Sydney, New South Wales, 2006</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lacombe, Sandrine" sort="Lacombe, Sandrine" uniqKey="Lacombe S" first="Sandrine" last="Lacombe">Sandrine Lacombe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Collisions Atomiques et Moleculaires, Universite de Paris-Sud, Batiment 351, F-91405 Orsay, Orsay Cedex, FRANCE.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">France</country>
<wicri:regionArea>Laboratoire des Collisions Atomiques et Moleculaires, Universite de Paris-Sud, Batiment 351, F-91405 Orsay, Orsay Cedex</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29125831</idno>
<idno type="pmid">29125831</idno>
<idno type="doi">10.1088/1361-6560/aa99ce</idno>
<idno type="wicri:Area/PubMed/Corpus">000020</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000020</idno>
<idno type="wicri:Area/PubMed/Curation">000020</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000020</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nanoparticle radio-enhancement: principles, progress and application to cancer treatment.</title>
<author>
<name sortKey="Kuncic, Zdenka" sort="Kuncic, Zdenka" uniqKey="Kuncic Z" first="Zdenka" last="Kuncic">Zdenka Kuncic</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Physics A28, University of Sydney, University of Sydney, Sydney, New South Wales, 2006, AUSTRALIA.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Australie</country>
<wicri:regionArea>School of Physics A28, University of Sydney, University of Sydney, Sydney, New South Wales, 2006</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lacombe, Sandrine" sort="Lacombe, Sandrine" uniqKey="Lacombe S" first="Sandrine" last="Lacombe">Sandrine Lacombe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Collisions Atomiques et Moleculaires, Universite de Paris-Sud, Batiment 351, F-91405 Orsay, Orsay Cedex, FRANCE.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">France</country>
<wicri:regionArea>Laboratoire des Collisions Atomiques et Moleculaires, Universite de Paris-Sud, Batiment 351, F-91405 Orsay, Orsay Cedex</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physics in medicine and biology</title>
<idno type="eISSN">1361-6560</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Enhancement of radiation effects by high-atomic number nanoparticles (NPs) has been increasingly studied for its potential to improve radiotherapeutic efficacy. The underlying principle of NP radio-enhancement is the potential to release copious electrons into a nanoscale volume, thereby amplifying radiation-induced biological damage. While the vast majority of studies to date have focused on gold nanoparticles with photon radiation, an increasing number of experimental, theoretical and simulation studies have explored opportunities offered by other NPs (e.g. gadolinium, platinum, iron oxide, hafnium) and other therapeutic radiation sources such as ion beams. It is thus of interest to the research community to consolidate findings from the different studies and summarise progress to date, as well as to identify strategies that offer promising opportunities for clinical translation. This is the purpose of this Topical Review.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">29125831</PMID>
<DateCreated>
<Year>2017</Year>
<Month>11</Month>
<Day>10</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1361-6560</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2017</Year>
<Month>Nov</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Physics in medicine and biology</Title>
<ISOAbbreviation>Phys Med Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Nanoparticle radio-enhancement: principles, progress and application to cancer treatment.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1088/1361-6560/aa99ce</ELocationID>
<Abstract>
<AbstractText>Enhancement of radiation effects by high-atomic number nanoparticles (NPs) has been increasingly studied for its potential to improve radiotherapeutic efficacy. The underlying principle of NP radio-enhancement is the potential to release copious electrons into a nanoscale volume, thereby amplifying radiation-induced biological damage. While the vast majority of studies to date have focused on gold nanoparticles with photon radiation, an increasing number of experimental, theoretical and simulation studies have explored opportunities offered by other NPs (e.g. gadolinium, platinum, iron oxide, hafnium) and other therapeutic radiation sources such as ion beams. It is thus of interest to the research community to consolidate findings from the different studies and summarise progress to date, as well as to identify strategies that offer promising opportunities for clinical translation. This is the purpose of this Topical Review.</AbstractText>
<CopyrightInformation>Creative Commons Attribution license.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kuncic</LastName>
<ForeName>Zdenka</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">0000-0001-6765-3215</Identifier>
<AffiliationInfo>
<Affiliation>School of Physics A28, University of Sydney, University of Sydney, Sydney, New South Wales, 2006, AUSTRALIA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lacombe</LastName>
<ForeName>Sandrine</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire des Collisions Atomiques et Moleculaires, Universite de Paris-Sud, Batiment 351, F-91405 Orsay, Orsay Cedex, FRANCE.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>11</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Phys Med Biol</MedlineTA>
<NlmUniqueID>0401220</NlmUniqueID>
<ISSNLinking>0031-9155</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">nanoparticles</Keyword>
<Keyword MajorTopicYN="N">particle therapy</Keyword>
<Keyword MajorTopicYN="N">proton therapy</Keyword>
<Keyword MajorTopicYN="N">radiation physics</Keyword>
<Keyword MajorTopicYN="N">radio-enhancement</Keyword>
<Keyword MajorTopicYN="N">radiotherapy</Keyword>
<Keyword MajorTopicYN="N">theranostics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29125831</ArticleId>
<ArticleId IdType="doi">10.1088/1361-6560/aa99ce</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000020 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000020 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:29125831
   |texte=   Nanoparticle radio-enhancement: principles, progress and application to cancer treatment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:29125831" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024