Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Binding and interlayer force in the near-contact region of two graphite slabs: experiment and theory.

Identifieur interne : 003A70 ( PubMed/Corpus ); précédent : 003A69; suivant : 003A71

Binding and interlayer force in the near-contact region of two graphite slabs: experiment and theory.

Auteurs : Tim Gould ; Ze Liu ; Jefferson Zhe Liu ; John F. Dobson ; Quanshui Zheng ; S. Lebègue

Source :

RBID : pubmed:24329079

Abstract

Via a novel experiment, Liu et al. [Phys. Rev. B 85, 205418 (2012)] estimated the graphite binding energy, specifically the cleavage energy, an important physical property of bulk graphite. We re-examine the data analysis and note that within the standard Lennard-Jones model employed, there are difficulties in achieving internal consistency in the reproduction of the graphite elastic properties. By employing similar models which guarantee consistency with the elastic constant, we find a wide range of model dependent binding energy values from the same experimental data. We attribute some of the difficulties in the determination of the binding energy to: (i) limited theoretical understanding of the van der Waals dispersion of graphite cleavage, (ii) the mis-match between the strong bending stiffness of the graphite-SiO2 cantilever and the weak asymptotic inter-layer forces that are integrated over to produce the binding energy. We find, however, that the data do support determination of a maximum inter-layer force that is relatively model independent. We conclude that the peak force per unit area is 1.1 ± 0.15 GPa for cleavage, and occurs at an inter-layer spacing of 0.377 ± 0.013 nm.

DOI: 10.1063/1.4839615
PubMed: 24329079

Links to Exploration step

pubmed:24329079

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Binding and interlayer force in the near-contact region of two graphite slabs: experiment and theory.</title>
<author>
<name sortKey="Gould, Tim" sort="Gould, Tim" uniqKey="Gould T" first="Tim" last="Gould">Tim Gould</name>
<affiliation>
<nlm:affiliation>Queensland Micro and Nano Technology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ze" sort="Liu, Ze" uniqKey="Liu Z" first="Ze" last="Liu">Ze Liu</name>
<affiliation>
<nlm:affiliation>Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jefferson Zhe" sort="Liu, Jefferson Zhe" uniqKey="Liu J" first="Jefferson Zhe" last="Liu">Jefferson Zhe Liu</name>
<affiliation>
<nlm:affiliation>Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dobson, John F" sort="Dobson, John F" uniqKey="Dobson J" first="John F" last="Dobson">John F. Dobson</name>
<affiliation>
<nlm:affiliation>Queensland Micro and Nano Technology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Quanshui" sort="Zheng, Quanshui" uniqKey="Zheng Q" first="Quanshui" last="Zheng">Quanshui Zheng</name>
<affiliation>
<nlm:affiliation>Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lebegue, S" sort="Lebegue, S" uniqKey="Lebegue S" first="S" last="Lebègue">S. Lebègue</name>
<affiliation>
<nlm:affiliation>Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2, UMR CNRS 7036) Institut Jean Barriol, Université de Lorraine BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24329079</idno>
<idno type="pmid">24329079</idno>
<idno type="doi">10.1063/1.4839615</idno>
<idno type="wicri:Area/PubMed/Corpus">003A70</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003A70</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Binding and interlayer force in the near-contact region of two graphite slabs: experiment and theory.</title>
<author>
<name sortKey="Gould, Tim" sort="Gould, Tim" uniqKey="Gould T" first="Tim" last="Gould">Tim Gould</name>
<affiliation>
<nlm:affiliation>Queensland Micro and Nano Technology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ze" sort="Liu, Ze" uniqKey="Liu Z" first="Ze" last="Liu">Ze Liu</name>
<affiliation>
<nlm:affiliation>Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jefferson Zhe" sort="Liu, Jefferson Zhe" uniqKey="Liu J" first="Jefferson Zhe" last="Liu">Jefferson Zhe Liu</name>
<affiliation>
<nlm:affiliation>Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dobson, John F" sort="Dobson, John F" uniqKey="Dobson J" first="John F" last="Dobson">John F. Dobson</name>
<affiliation>
<nlm:affiliation>Queensland Micro and Nano Technology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Quanshui" sort="Zheng, Quanshui" uniqKey="Zheng Q" first="Quanshui" last="Zheng">Quanshui Zheng</name>
<affiliation>
<nlm:affiliation>Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lebegue, S" sort="Lebegue, S" uniqKey="Lebegue S" first="S" last="Lebègue">S. Lebègue</name>
<affiliation>
<nlm:affiliation>Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2, UMR CNRS 7036) Institut Jean Barriol, Université de Lorraine BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of chemical physics</title>
<idno type="eISSN">1089-7690</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Via a novel experiment, Liu et al. [Phys. Rev. B 85, 205418 (2012)] estimated the graphite binding energy, specifically the cleavage energy, an important physical property of bulk graphite. We re-examine the data analysis and note that within the standard Lennard-Jones model employed, there are difficulties in achieving internal consistency in the reproduction of the graphite elastic properties. By employing similar models which guarantee consistency with the elastic constant, we find a wide range of model dependent binding energy values from the same experimental data. We attribute some of the difficulties in the determination of the binding energy to: (i) limited theoretical understanding of the van der Waals dispersion of graphite cleavage, (ii) the mis-match between the strong bending stiffness of the graphite-SiO2 cantilever and the weak asymptotic inter-layer forces that are integrated over to produce the binding energy. We find, however, that the data do support determination of a maximum inter-layer force that is relatively model independent. We conclude that the peak force per unit area is 1.1 ± 0.15 GPa for cleavage, and occurs at an inter-layer spacing of 0.377 ± 0.013 nm.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">24329079</PMID>
<DateCreated>
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1089-7690</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>139</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of chemical physics</Title>
<ISOAbbreviation>J Chem Phys</ISOAbbreviation>
</Journal>
<ArticleTitle>Binding and interlayer force in the near-contact region of two graphite slabs: experiment and theory.</ArticleTitle>
<Pagination>
<MedlinePgn>224704</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1063/1.4839615</ELocationID>
<Abstract>
<AbstractText>Via a novel experiment, Liu et al. [Phys. Rev. B 85, 205418 (2012)] estimated the graphite binding energy, specifically the cleavage energy, an important physical property of bulk graphite. We re-examine the data analysis and note that within the standard Lennard-Jones model employed, there are difficulties in achieving internal consistency in the reproduction of the graphite elastic properties. By employing similar models which guarantee consistency with the elastic constant, we find a wide range of model dependent binding energy values from the same experimental data. We attribute some of the difficulties in the determination of the binding energy to: (i) limited theoretical understanding of the van der Waals dispersion of graphite cleavage, (ii) the mis-match between the strong bending stiffness of the graphite-SiO2 cantilever and the weak asymptotic inter-layer forces that are integrated over to produce the binding energy. We find, however, that the data do support determination of a maximum inter-layer force that is relatively model independent. We conclude that the peak force per unit area is 1.1 ± 0.15 GPa for cleavage, and occurs at an inter-layer spacing of 0.377 ± 0.013 nm.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gould</LastName>
<ForeName>Tim</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Queensland Micro and Nano Technology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Ze</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jefferson Zhe</ForeName>
<Initials>JZ</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dobson</LastName>
<ForeName>John F</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Queensland Micro and Nano Technology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Quanshui</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lebègue</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2, UMR CNRS 7036) Institut Jean Barriol, Université de Lorraine BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Phys</MedlineTA>
<NlmUniqueID>0375360</NlmUniqueID>
<ISSNLinking>0021-9606</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24329079</ArticleId>
<ArticleId IdType="doi">10.1063/1.4839615</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003A70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24329079
   |texte=   Binding and interlayer force in the near-contact region of two graphite slabs: experiment and theory.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24329079" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024