Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events.

Identifieur interne : 003A29 ( PubMed/Corpus ); précédent : 003A28; suivant : 003A30

Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events.

Auteurs : Rachael A. Mccloy ; Samuel Rogers ; C Elizabeth Caldon ; Thierry Lorca ; Anna Castro ; Andrew Burgess

Source :

RBID : pubmed:24626186

English descriptors

Abstract

Entry and progression through mitosis has traditionally been linked directly to the activity of cyclin-dependent kinase 1 (Cdk1). In this study we utilized low doses of the Cdk1-specific inhibitor, RO3306 from early G 2 phase onwards. Addition of low doses of RO3306 in G 2 phase induced minor chromosome congression and segregation defects. In contrast, mild doses of RO3306 during G 2 phase resulted in cells entering an aberrant mitosis, with cells fragmenting centrosomes and failing to fully disassemble the nuclear envelope. Cells often underwent cytokinesis and metaphase simultaneously, despite the presence of an active spindle assembly checkpoint, which prevented degradation of cyclin B1 and securin, resulting in the random partitioning of whole chromosomes. This highly aberrant mitosis produced a significant increase in the proportion of viable polyploid cells present up to 3 days post-treatment. Furthermore, cells treated with medium doses of RO3306 were only able to reach the threshold of Cdk1 substrate phosphorylation required to initiate nuclear envelope breakdown, but failed to reach the levels of phosphorylation required to correctly complete pro-metaphase. Treatment with low doses of Okadaic acid, which primarily inhibits PP2A, rescued the mitotic defects and increased the number of cells that completed a normal mitosis. This supports the current model that PP2A is the primary phosphatase that counterbalances the activity of Cdk1 during mitosis. Taken together these results show that continuous and subtle disruption of Cdk1 activity from G 2 phase onwards has deleterious consequences on mitotic progression by disrupting the balance between Cdk1 and PP2A.

DOI: 10.4161/cc.28401
PubMed: 24626186

Links to Exploration step

pubmed:24626186

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events.</title>
<author>
<name sortKey="Mccloy, Rachael A" sort="Mccloy, Rachael A" uniqKey="Mccloy R" first="Rachael A" last="Mccloy">Rachael A. Mccloy</name>
<affiliation>
<nlm:affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rogers, Samuel" sort="Rogers, Samuel" uniqKey="Rogers S" first="Samuel" last="Rogers">Samuel Rogers</name>
<affiliation>
<nlm:affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Caldon, C Elizabeth" sort="Caldon, C Elizabeth" uniqKey="Caldon C" first="C Elizabeth" last="Caldon">C Elizabeth Caldon</name>
<affiliation>
<nlm:affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia; St. Vincent's Clinical School; Faculty of Medicine; UNSW; Sydney, New South Wales, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lorca, Thierry" sort="Lorca, Thierry" uniqKey="Lorca T" first="Thierry" last="Lorca">Thierry Lorca</name>
<affiliation>
<nlm:affiliation>Universités Montpellier 2 et 1; Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Castro, Anna" sort="Castro, Anna" uniqKey="Castro A" first="Anna" last="Castro">Anna Castro</name>
<affiliation>
<nlm:affiliation>Universités Montpellier 2 et 1; Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burgess, Andrew" sort="Burgess, Andrew" uniqKey="Burgess A" first="Andrew" last="Burgess">Andrew Burgess</name>
<affiliation>
<nlm:affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia; St. Vincent's Clinical School; Faculty of Medicine; UNSW; Sydney, New South Wales, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24626186</idno>
<idno type="pmid">24626186</idno>
<idno type="doi">10.4161/cc.28401</idno>
<idno type="wicri:Area/PubMed/Corpus">003A29</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003A29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events.</title>
<author>
<name sortKey="Mccloy, Rachael A" sort="Mccloy, Rachael A" uniqKey="Mccloy R" first="Rachael A" last="Mccloy">Rachael A. Mccloy</name>
<affiliation>
<nlm:affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rogers, Samuel" sort="Rogers, Samuel" uniqKey="Rogers S" first="Samuel" last="Rogers">Samuel Rogers</name>
<affiliation>
<nlm:affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Caldon, C Elizabeth" sort="Caldon, C Elizabeth" uniqKey="Caldon C" first="C Elizabeth" last="Caldon">C Elizabeth Caldon</name>
<affiliation>
<nlm:affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia; St. Vincent's Clinical School; Faculty of Medicine; UNSW; Sydney, New South Wales, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lorca, Thierry" sort="Lorca, Thierry" uniqKey="Lorca T" first="Thierry" last="Lorca">Thierry Lorca</name>
<affiliation>
<nlm:affiliation>Universités Montpellier 2 et 1; Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Castro, Anna" sort="Castro, Anna" uniqKey="Castro A" first="Anna" last="Castro">Anna Castro</name>
<affiliation>
<nlm:affiliation>Universités Montpellier 2 et 1; Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burgess, Andrew" sort="Burgess, Andrew" uniqKey="Burgess A" first="Andrew" last="Burgess">Andrew Burgess</name>
<affiliation>
<nlm:affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia; St. Vincent's Clinical School; Faculty of Medicine; UNSW; Sydney, New South Wales, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell cycle (Georgetown, Tex.)</title>
<idno type="eISSN">1551-4005</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CDC2 Protein Kinase (antagonists & inhibitors)</term>
<term>CDC2 Protein Kinase (metabolism)</term>
<term>Centrosome (drug effects)</term>
<term>Centrosome (metabolism)</term>
<term>Cytokinesis</term>
<term>G2 Phase</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mitosis</term>
<term>Okadaic Acid (pharmacology)</term>
<term>Phosphorylation</term>
<term>Polyploidy</term>
<term>Quinolines (pharmacology)</term>
<term>Spindle Apparatus (physiology)</term>
<term>Spindle Apparatus (ultrastructure)</term>
<term>Thiazoles (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>CDC2 Protein Kinase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>CDC2 Protein Kinase</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Centrosome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Centrosome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Okadaic Acid</term>
<term>Quinolines</term>
<term>Thiazoles</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Spindle Apparatus</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Spindle Apparatus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cytokinesis</term>
<term>G2 Phase</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mitosis</term>
<term>Phosphorylation</term>
<term>Polyploidy</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Entry and progression through mitosis has traditionally been linked directly to the activity of cyclin-dependent kinase 1 (Cdk1). In this study we utilized low doses of the Cdk1-specific inhibitor, RO3306 from early G 2 phase onwards. Addition of low doses of RO3306 in G 2 phase induced minor chromosome congression and segregation defects. In contrast, mild doses of RO3306 during G 2 phase resulted in cells entering an aberrant mitosis, with cells fragmenting centrosomes and failing to fully disassemble the nuclear envelope. Cells often underwent cytokinesis and metaphase simultaneously, despite the presence of an active spindle assembly checkpoint, which prevented degradation of cyclin B1 and securin, resulting in the random partitioning of whole chromosomes. This highly aberrant mitosis produced a significant increase in the proportion of viable polyploid cells present up to 3 days post-treatment. Furthermore, cells treated with medium doses of RO3306 were only able to reach the threshold of Cdk1 substrate phosphorylation required to initiate nuclear envelope breakdown, but failed to reach the levels of phosphorylation required to correctly complete pro-metaphase. Treatment with low doses of Okadaic acid, which primarily inhibits PP2A, rescued the mitotic defects and increased the number of cells that completed a normal mitosis. This supports the current model that PP2A is the primary phosphatase that counterbalances the activity of Cdk1 during mitosis. Taken together these results show that continuous and subtle disruption of Cdk1 activity from G 2 phase onwards has deleterious consequences on mitotic progression by disrupting the balance between Cdk1 and PP2A.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24626186</PMID>
<DateCreated>
<Year>2014</Year>
<Month>05</Month>
<Day>05</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1551-4005</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Cell cycle (Georgetown, Tex.)</Title>
<ISOAbbreviation>Cell Cycle</ISOAbbreviation>
</Journal>
<ArticleTitle>Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events.</ArticleTitle>
<Pagination>
<MedlinePgn>1400-12</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/cc.28401</ELocationID>
<Abstract>
<AbstractText>Entry and progression through mitosis has traditionally been linked directly to the activity of cyclin-dependent kinase 1 (Cdk1). In this study we utilized low doses of the Cdk1-specific inhibitor, RO3306 from early G 2 phase onwards. Addition of low doses of RO3306 in G 2 phase induced minor chromosome congression and segregation defects. In contrast, mild doses of RO3306 during G 2 phase resulted in cells entering an aberrant mitosis, with cells fragmenting centrosomes and failing to fully disassemble the nuclear envelope. Cells often underwent cytokinesis and metaphase simultaneously, despite the presence of an active spindle assembly checkpoint, which prevented degradation of cyclin B1 and securin, resulting in the random partitioning of whole chromosomes. This highly aberrant mitosis produced a significant increase in the proportion of viable polyploid cells present up to 3 days post-treatment. Furthermore, cells treated with medium doses of RO3306 were only able to reach the threshold of Cdk1 substrate phosphorylation required to initiate nuclear envelope breakdown, but failed to reach the levels of phosphorylation required to correctly complete pro-metaphase. Treatment with low doses of Okadaic acid, which primarily inhibits PP2A, rescued the mitotic defects and increased the number of cells that completed a normal mitosis. This supports the current model that PP2A is the primary phosphatase that counterbalances the activity of Cdk1 during mitosis. Taken together these results show that continuous and subtle disruption of Cdk1 activity from G 2 phase onwards has deleterious consequences on mitotic progression by disrupting the balance between Cdk1 and PP2A.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>McCloy</LastName>
<ForeName>Rachael A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rogers</LastName>
<ForeName>Samuel</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Caldon</LastName>
<ForeName>C Elizabeth</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia; St. Vincent's Clinical School; Faculty of Medicine; UNSW; Sydney, New South Wales, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lorca</LastName>
<ForeName>Thierry</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Universités Montpellier 2 et 1; Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Castro</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Universités Montpellier 2 et 1; Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burgess</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Sydney, New South Wales, Australia; St. Vincent's Clinical School; Faculty of Medicine; UNSW; Sydney, New South Wales, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell Cycle</MedlineTA>
<NlmUniqueID>101137841</NlmUniqueID>
<ISSNLinking>1551-4005</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011804">Quinolines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C512984">RO 3306</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013844">Thiazoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1W21G5Q4N2</RegistryNumber>
<NameOfSubstance UI="D019319">Okadaic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.22</RegistryNumber>
<NameOfSubstance UI="D016203">CDC2 Protein Kinase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17374-9</RefSource>
<PMID Version="1">24101512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Prolif. 2011 Oct;44(5):391-400</RefSource>
<PMID Version="1">21951282</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(9):e45726</RefSource>
<PMID Version="1">23029203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2009 Apr 20;185(2):193-202</RefSource>
<PMID Version="1">19364923</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Apr 13;440(7086):954-8</RefSource>
<PMID Version="1">16612388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2010 Nov;67(21):3725-37</RefSource>
<PMID Version="1">20496096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2012 Nov 20;22(22):R966-80</RefSource>
<PMID Version="1">23174302</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2010 Sep;12(9):886-93</RefSource>
<PMID Version="1">20711181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Cycle. 2006 Nov;5(22):2555-6</RefSource>
<PMID Version="1">17172841</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Mol Cell Biol. 2011 Jul;12(7):427-38</RefSource>
<PMID Version="1">21633387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 2006 Jun 10;312(10):1831-42</RefSource>
<PMID Version="1">16600213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2011 Jun 23;30(25):2799-809</RefSource>
<PMID Version="1">21339734</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2007 Apr;9(4):436-44</RefSource>
<PMID Version="1">17351640</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2007 Nov 19;179(4):671-85</RefSource>
<PMID Version="1">18025303</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2014 Jan 2;33(1):116-28</RefSource>
<PMID Version="1">23524583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2013 Nov;15(11):1378-85</RefSource>
<PMID Version="1">24096242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2010 Apr 20;18(4):533-43</RefSource>
<PMID Version="1">20412769</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10660-5</RefSource>
<PMID Version="1">16818887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2011 Apr 15;22(8):1191-206</RefSource>
<PMID Version="1">21325631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 1996 May;109 ( Pt 5):1081-93</RefSource>
<PMID Version="1">8743955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Cancer. 2012 Nov;3(11-12):712-20</RefSource>
<PMID Version="1">23634258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2012 Aug 20;198(4):491-9</RefSource>
<PMID Version="1">22908307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Cancer. 2013 Apr 1;132(7):1505-15</RefSource>
<PMID Version="1">22945332</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2011 Dec 13;21(6):1104-15</RefSource>
<PMID Version="1">22172673</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12564-9</RefSource>
<PMID Version="1">20538976</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2011 Dec 9;44(5):710-20</RefSource>
<PMID Version="1">22152475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Dec 17;330(6011):1670-3</RefSource>
<PMID Version="1">21164013</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2009 Sep 7;186(5):675-84</RefSource>
<PMID Version="1">19720871</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Biol. 2012 Aug 24;19(8):1028-40</RefSource>
<PMID Version="1">22921070</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Sep 25;325(5948):1682-6</RefSource>
<PMID Version="1">19779198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2010 Apr 19;189(2):247-59</RefSource>
<PMID Version="1">20404109</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Dec 23;468(7327):1074-9</RefSource>
<PMID Version="1">21179163</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Dec 17;330(6011):1673-7</RefSource>
<PMID Version="1">21164014</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2005 Jan 3;168(1):21-8</RefSource>
<PMID Version="1">15631988</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Cell. 2008 Aug 12;14(2):111-22</RefSource>
<PMID Version="1">18656424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2009 Nov;20(22):4777-89</RefSource>
<PMID Version="1">19793917</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cancer Ther. 2009 Jun;8(6):1646-54</RefSource>
<PMID Version="1">19509263</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2013 Apr;15(4):430-9</RefSource>
<PMID Version="1">23455478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6196-201</RefSource>
<PMID Version="1">16603632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2007;365:23-38</RefSource>
<PMID Version="1">17200551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1996 Dec 6;274(5293):1672-7</RefSource>
<PMID Version="1">8939849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Cycle. 2010 Sep 1;9(17):3591-601</RefSource>
<PMID Version="1">20818157</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2013 Nov 7;52(3):393-405</RefSource>
<PMID Version="1">24120663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2009 Aug 20;28(33):2925-39</RefSource>
<PMID Version="1">19561645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2009 Sep 16;28(18):2786-93</RefSource>
<PMID Version="1">19680222</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2011 Feb 1;124(Pt 3):338-47</RefSource>
<PMID Version="1">21224392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Crit Rev Oncog. 2012;17(2):175-98</RefSource>
<PMID Version="1">22471707</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Semin Cancer Biol. 1995 Apr;6(2):63-72</RefSource>
<PMID Version="1">7647308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2009 Sep 16;28(18):2777-85</RefSource>
<PMID Version="1">19696736</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016203" MajorTopicYN="N">CDC2 Protein Kinase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018385" MajorTopicYN="N">Centrosome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048749" MajorTopicYN="N">Cytokinesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016195" MajorTopicYN="Y">G2 Phase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008938" MajorTopicYN="Y">Mitosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019319" MajorTopicYN="N">Okadaic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="N">Polyploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011804" MajorTopicYN="N">Quinolines</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008941" MajorTopicYN="N">Spindle Apparatus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013844" MajorTopicYN="N">Thiazoles</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4050138</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cdk1</Keyword>
<Keyword MajorTopicYN="N">PP2A</Keyword>
<Keyword MajorTopicYN="N">RO3306</Keyword>
<Keyword MajorTopicYN="N">SAC</Keyword>
<Keyword MajorTopicYN="N">cyclin B1</Keyword>
<Keyword MajorTopicYN="N">mitosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24626186</ArticleId>
<ArticleId IdType="pii">28401</ArticleId>
<ArticleId IdType="doi">10.4161/cc.28401</ArticleId>
<ArticleId IdType="pmc">PMC4050138</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003A29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24626186
   |texte=   Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24626186" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024