Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of polarization and a source model for dose calculation in MRT.

Identifieur interne : 003848 ( PubMed/Corpus ); précédent : 003847; suivant : 003849

Influence of polarization and a source model for dose calculation in MRT.

Auteurs : Stefan Bartzsch ; Michael Lerch ; Marco Petasecca ; Elke Br Uer-Krisch ; Uwe Oelfke

Source :

RBID : pubmed:24694123

English descriptors

Abstract

Microbeam Radiation Therapy (MRT), an alternative preclinical treatment strategy using spatially modulated synchrotron radiation on a micrometer scale, has the great potential to cure malignant tumors (e.g., brain tumors) while having low side effects on normal tissue. Dose measurement and calculation in MRT is challenging because of the spatial accuracy required and the arising high dose differences. Dose calculation with Monte Carlo simulations is time consuming and their accuracy is still a matter of debate. In particular, the influence of photon polarization has been discussed in the literature. Moreover, it is controversial whether a complete knowledge of phase space trajectories, i.e., the simulation of the machine from the wiggler to the collimator, is necessary in order to accurately calculate the dose.

DOI: 10.1118/1.4867858
PubMed: 24694123

Links to Exploration step

pubmed:24694123

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of polarization and a source model for dose calculation in MRT.</title>
<author>
<name sortKey="Bartzsch, Stefan" sort="Bartzsch, Stefan" uniqKey="Bartzsch S" first="Stefan" last="Bartzsch">Stefan Bartzsch</name>
<affiliation>
<nlm:affiliation>The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, United Kingdom and Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lerch, Michael" sort="Lerch, Michael" uniqKey="Lerch M" first="Michael" last="Lerch">Michael Lerch</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petasecca, Marco" sort="Petasecca, Marco" uniqKey="Petasecca M" first="Marco" last="Petasecca">Marco Petasecca</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Br Uer Krisch, Elke" sort="Br Uer Krisch, Elke" uniqKey="Br Uer Krisch E" first="Elke" last="Br Uer-Krisch">Elke Br Uer-Krisch</name>
<affiliation>
<nlm:affiliation>European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38000 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oelfke, Uwe" sort="Oelfke, Uwe" uniqKey="Oelfke U" first="Uwe" last="Oelfke">Uwe Oelfke</name>
<affiliation>
<nlm:affiliation>The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, United Kingdom and Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24694123</idno>
<idno type="pmid">24694123</idno>
<idno type="doi">10.1118/1.4867858</idno>
<idno type="wicri:Area/PubMed/Corpus">003848</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003848</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influence of polarization and a source model for dose calculation in MRT.</title>
<author>
<name sortKey="Bartzsch, Stefan" sort="Bartzsch, Stefan" uniqKey="Bartzsch S" first="Stefan" last="Bartzsch">Stefan Bartzsch</name>
<affiliation>
<nlm:affiliation>The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, United Kingdom and Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lerch, Michael" sort="Lerch, Michael" uniqKey="Lerch M" first="Michael" last="Lerch">Michael Lerch</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petasecca, Marco" sort="Petasecca, Marco" uniqKey="Petasecca M" first="Marco" last="Petasecca">Marco Petasecca</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Br Uer Krisch, Elke" sort="Br Uer Krisch, Elke" uniqKey="Br Uer Krisch E" first="Elke" last="Br Uer-Krisch">Elke Br Uer-Krisch</name>
<affiliation>
<nlm:affiliation>European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38000 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oelfke, Uwe" sort="Oelfke, Uwe" uniqKey="Oelfke U" first="Uwe" last="Oelfke">Uwe Oelfke</name>
<affiliation>
<nlm:affiliation>The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, United Kingdom and Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Medical physics</title>
<idno type="eISSN">2473-4209</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Artifacts</term>
<term>Monte Carlo Method</term>
<term>Radiation Dosage</term>
<term>Radiotherapy Dosage</term>
<term>Radiotherapy Planning, Computer-Assisted (instrumentation)</term>
<term>Radiotherapy Planning, Computer-Assisted (methods)</term>
<term>Synchrotrons</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Radiotherapy Planning, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Radiotherapy Planning, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Artifacts</term>
<term>Monte Carlo Method</term>
<term>Radiation Dosage</term>
<term>Radiotherapy Dosage</term>
<term>Synchrotrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microbeam Radiation Therapy (MRT), an alternative preclinical treatment strategy using spatially modulated synchrotron radiation on a micrometer scale, has the great potential to cure malignant tumors (e.g., brain tumors) while having low side effects on normal tissue. Dose measurement and calculation in MRT is challenging because of the spatial accuracy required and the arising high dose differences. Dose calculation with Monte Carlo simulations is time consuming and their accuracy is still a matter of debate. In particular, the influence of photon polarization has been discussed in the literature. Moreover, it is controversial whether a complete knowledge of phase space trajectories, i.e., the simulation of the machine from the wiggler to the collimator, is necessary in order to accurately calculate the dose.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24694123</PMID>
<DateCreated>
<Year>2014</Year>
<Month>04</Month>
<Day>03</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2473-4209</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>41</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Medical physics</Title>
<ISOAbbreviation>Med Phys</ISOAbbreviation>
</Journal>
<ArticleTitle>Influence of polarization and a source model for dose calculation in MRT.</ArticleTitle>
<Pagination>
<MedlinePgn>041703</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1118/1.4867858</ELocationID>
<Abstract>
<AbstractText Label="PURPOSE" NlmCategory="OBJECTIVE">Microbeam Radiation Therapy (MRT), an alternative preclinical treatment strategy using spatially modulated synchrotron radiation on a micrometer scale, has the great potential to cure malignant tumors (e.g., brain tumors) while having low side effects on normal tissue. Dose measurement and calculation in MRT is challenging because of the spatial accuracy required and the arising high dose differences. Dose calculation with Monte Carlo simulations is time consuming and their accuracy is still a matter of debate. In particular, the influence of photon polarization has been discussed in the literature. Moreover, it is controversial whether a complete knowledge of phase space trajectories, i.e., the simulation of the machine from the wiggler to the collimator, is necessary in order to accurately calculate the dose.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">With Monte Carlo simulations in the Geant4 toolkit, the authors investigate the influence of polarization on the dose distribution and the therapeutically important peak to valley dose ratios (PVDRs). Furthermore, the authors analyze in detail phase space information provided by Martínez-Rovira et al. ["Development and commissioning of a Monte Carlo photon model for the forthcoming clinical trials in microbeam radiation therapy," Med. Phys. 39(1), 119-131 (2012)] and examine its influence on peak and valley doses. A simple source model is developed using parallel beams and its applicability is shown in a semiadjoint Monte Carlo simulation. Results are compared to measurements and previously published data.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Polarization has a significant influence on the scattered dose outside the microbeam field. In the radiation field, however, dose and PVDRs deduced from calculations without polarization and with polarization differ by less than 3%. The authors show that the key consequences from the phase space information for dose calculations are inhomogeneous primary photon flux, partial absorption due to inclined beam incidence outside the field center, increased beam width and center to center distance due to the beam propagation from the collimator to the phantom surface and imperfect absorption in the absorber material of the Multislit Collimator. These corrections have an effect of approximately 10% on the valley dose and suffice to describe doses in MRT within the measurement uncertainties of currently available dosimetry techniques.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The source for the first clinical pet trials in MRT is characterized with respect to its phase space and the photon polarization. The results suggest the use of a presented simplified phase space model in dose calculations and hence pave the way for alternative and fast dose calculation algorithms. They also show that the polarization is of minor importance for the clinical important peak and valley doses inside the microbeam field.</AbstractText>
<CopyrightInformation>© 2014 American Association of Physicists in Medicine.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bartzsch</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, United Kingdom and Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lerch</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Petasecca</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bräuer-Krisch</LastName>
<ForeName>Elke</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38000 Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oelfke</LastName>
<ForeName>Uwe</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, United Kingdom and Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Med Phys</MedlineTA>
<NlmUniqueID>0425746</NlmUniqueID>
<ISSNLinking>0094-2405</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016477" MajorTopicYN="N">Artifacts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009010" MajorTopicYN="Y">Monte Carlo Method</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011829" MajorTopicYN="Y">Radiation Dosage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011879" MajorTopicYN="N">Radiotherapy Dosage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011880" MajorTopicYN="N">Radiotherapy Planning, Computer-Assisted</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017356" MajorTopicYN="N">Synchrotrons</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24694123</ArticleId>
<ArticleId IdType="doi">10.1118/1.4867858</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003848 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003848 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24694123
   |texte=   Influence of polarization and a source model for dose calculation in MRT.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24694123" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024