Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New visuomotor maps are immediately available to the opposite limb.

Identifieur interne : 003714 ( PubMed/Corpus ); précédent : 003713; suivant : 003715

New visuomotor maps are immediately available to the opposite limb.

Auteurs : Timothy J. Carroll ; Eugene Poh ; Aymar De Rugy

Source :

RBID : pubmed:24598522

English descriptors

Abstract

Humans can learn to make accurate movements when the required map between vision and motor commands changes, but can visuomotor maps obtained through experience with one limb benefit the other? Complete transfer would require new maps to be both fully compatible and accessible between limbs. However, when this question is addressed by providing subjects with rotated visual feedback during reaching, transfer is rarely apparent in the first few trials with the unpracticed limb and is sometimes absent altogether. Partial transfer might be explained by limited accessibility to remapped brain circuits, since critical visuomotor transformations mediating unilateral movements appear to be lateralized. Alternatively, if adaptation involves movement representations associated with both extrinsic (i.e., direction of motion in space) and intrinsic (i.e., joint or muscle based) frames of reference, new visuomotor maps might be incompatible with opposite limb use when visual distortions have opposite effects for the two limbs in intrinsic coordinates. Here we addressed this issue when subjects performed an isometric aiming task with the index finger. We manipulated the alignment of visuomotor distortion for the two hands in different reference frames by altering body posture relative to the orientation of the finger and the visual display. There was strong, immediate transfer of adaptation between limbs only when visuomotor distortion had identical effects in eye- and joint-based coordinates bilaterally. This implies that new visuomotor maps are encoded in neural circuits associated with both intrinsic and extrinsic movement representations and are available to both limbs.

DOI: 10.1152/jn.00042.2014
PubMed: 24598522

Links to Exploration step

pubmed:24598522

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New visuomotor maps are immediately available to the opposite limb.</title>
<author>
<name sortKey="Carroll, Timothy J" sort="Carroll, Timothy J" uniqKey="Carroll T" first="Timothy J" last="Carroll">Timothy J. Carroll</name>
<affiliation>
<nlm:affiliation>Centre for Sensorimotor Neuroscience, School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia; and timothy.carroll@uq.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poh, Eugene" sort="Poh, Eugene" uniqKey="Poh E" first="Eugene" last="Poh">Eugene Poh</name>
<affiliation>
<nlm:affiliation>Centre for Sensorimotor Neuroscience, School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Rugy, Aymar" sort="De Rugy, Aymar" uniqKey="De Rugy A" first="Aymar" last="De Rugy">Aymar De Rugy</name>
<affiliation>
<nlm:affiliation>Centre for Sensorimotor Neuroscience, School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia; and Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5287, Université Bordeaux Segalen, Bordeaux, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24598522</idno>
<idno type="pmid">24598522</idno>
<idno type="doi">10.1152/jn.00042.2014</idno>
<idno type="wicri:Area/PubMed/Corpus">003714</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003714</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">New visuomotor maps are immediately available to the opposite limb.</title>
<author>
<name sortKey="Carroll, Timothy J" sort="Carroll, Timothy J" uniqKey="Carroll T" first="Timothy J" last="Carroll">Timothy J. Carroll</name>
<affiliation>
<nlm:affiliation>Centre for Sensorimotor Neuroscience, School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia; and timothy.carroll@uq.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poh, Eugene" sort="Poh, Eugene" uniqKey="Poh E" first="Eugene" last="Poh">Eugene Poh</name>
<affiliation>
<nlm:affiliation>Centre for Sensorimotor Neuroscience, School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Rugy, Aymar" sort="De Rugy, Aymar" uniqKey="De Rugy A" first="Aymar" last="De Rugy">Aymar De Rugy</name>
<affiliation>
<nlm:affiliation>Centre for Sensorimotor Neuroscience, School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia; and Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5287, Université Bordeaux Segalen, Bordeaux, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neurophysiology</title>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (physiology)</term>
<term>Adult</term>
<term>Arm (physiology)</term>
<term>Brain (physiology)</term>
<term>Feedback, Sensory (physiology)</term>
<term>Female</term>
<term>Functional Laterality (physiology)</term>
<term>Humans</term>
<term>Learning (physiology)</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Movement (physiology)</term>
<term>Nerve Net (physiology)</term>
<term>Psychomotor Performance (physiology)</term>
<term>Visual Perception (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Arm</term>
<term>Brain</term>
<term>Feedback, Sensory</term>
<term>Functional Laterality</term>
<term>Learning</term>
<term>Movement</term>
<term>Nerve Net</term>
<term>Psychomotor Performance</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Humans can learn to make accurate movements when the required map between vision and motor commands changes, but can visuomotor maps obtained through experience with one limb benefit the other? Complete transfer would require new maps to be both fully compatible and accessible between limbs. However, when this question is addressed by providing subjects with rotated visual feedback during reaching, transfer is rarely apparent in the first few trials with the unpracticed limb and is sometimes absent altogether. Partial transfer might be explained by limited accessibility to remapped brain circuits, since critical visuomotor transformations mediating unilateral movements appear to be lateralized. Alternatively, if adaptation involves movement representations associated with both extrinsic (i.e., direction of motion in space) and intrinsic (i.e., joint or muscle based) frames of reference, new visuomotor maps might be incompatible with opposite limb use when visual distortions have opposite effects for the two limbs in intrinsic coordinates. Here we addressed this issue when subjects performed an isometric aiming task with the index finger. We manipulated the alignment of visuomotor distortion for the two hands in different reference frames by altering body posture relative to the orientation of the finger and the visual display. There was strong, immediate transfer of adaptation between limbs only when visuomotor distortion had identical effects in eye- and joint-based coordinates bilaterally. This implies that new visuomotor maps are encoded in neural circuits associated with both intrinsic and extrinsic movement representations and are available to both limbs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24598522</PMID>
<DateCreated>
<Year>2014</Year>
<Month>06</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>06</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>111</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of neurophysiology</Title>
<ISOAbbreviation>J. Neurophysiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>New visuomotor maps are immediately available to the opposite limb.</ArticleTitle>
<Pagination>
<MedlinePgn>2232-43</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/jn.00042.2014</ELocationID>
<Abstract>
<AbstractText>Humans can learn to make accurate movements when the required map between vision and motor commands changes, but can visuomotor maps obtained through experience with one limb benefit the other? Complete transfer would require new maps to be both fully compatible and accessible between limbs. However, when this question is addressed by providing subjects with rotated visual feedback during reaching, transfer is rarely apparent in the first few trials with the unpracticed limb and is sometimes absent altogether. Partial transfer might be explained by limited accessibility to remapped brain circuits, since critical visuomotor transformations mediating unilateral movements appear to be lateralized. Alternatively, if adaptation involves movement representations associated with both extrinsic (i.e., direction of motion in space) and intrinsic (i.e., joint or muscle based) frames of reference, new visuomotor maps might be incompatible with opposite limb use when visual distortions have opposite effects for the two limbs in intrinsic coordinates. Here we addressed this issue when subjects performed an isometric aiming task with the index finger. We manipulated the alignment of visuomotor distortion for the two hands in different reference frames by altering body posture relative to the orientation of the finger and the visual display. There was strong, immediate transfer of adaptation between limbs only when visuomotor distortion had identical effects in eye- and joint-based coordinates bilaterally. This implies that new visuomotor maps are encoded in neural circuits associated with both intrinsic and extrinsic movement representations and are available to both limbs.</AbstractText>
<CopyrightInformation>Copyright © 2014 the American Physiological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Carroll</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Centre for Sensorimotor Neuroscience, School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia; and timothy.carroll@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poh</LastName>
<ForeName>Eugene</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Centre for Sensorimotor Neuroscience, School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Rugy</LastName>
<ForeName>Aymar</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre for Sensorimotor Neuroscience, School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia; and Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5287, Université Bordeaux Segalen, Bordeaux, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016449">Randomized Controlled Trial</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurophysiol</MedlineTA>
<NlmUniqueID>0375404</NlmUniqueID>
<ISSNLinking>0022-3077</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001132" MajorTopicYN="N">Arm</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056228" MajorTopicYN="N">Feedback, Sensory</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007839" MajorTopicYN="N">Functional Laterality</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007858" MajorTopicYN="N">Learning</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009068" MajorTopicYN="N">Movement</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009415" MajorTopicYN="N">Nerve Net</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011597" MajorTopicYN="N">Psychomotor Performance</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014796" MajorTopicYN="N">Visual Perception</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">coordinate frame</Keyword>
<Keyword MajorTopicYN="N">interlimb transfer</Keyword>
<Keyword MajorTopicYN="N">sensorimotor adaptation</Keyword>
<Keyword MajorTopicYN="N">visuomotor rotation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24598522</ArticleId>
<ArticleId IdType="pii">jn.00042.2014</ArticleId>
<ArticleId IdType="doi">10.1152/jn.00042.2014</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003714 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003714 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24598522
   |texte=   New visuomotor maps are immediately available to the opposite limb.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24598522" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024