Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A new method to quantify within dive foraging behaviour in marine predators.

Identifieur interne : 003695 ( PubMed/Corpus ); précédent : 003694; suivant : 003696

A new method to quantify within dive foraging behaviour in marine predators.

Auteurs : Karine Heerah ; Mark Hindell ; Christophe Guinet ; Jean-Benoît Charrassin

Source :

RBID : pubmed:24922323

English descriptors

Abstract

Studies on diving behaviour classically divide a dive into three phases: the descent, bottom and ascent phases, with foraging assumed to occur during the bottom phase. The greater complexity of dive revealed through modern, high resolution data highlights the need to re-assess this approach and to consider a larger number of phases within individual dives. Two southern elephant seals (SES) were fitted with a head mounted Time Depth Recorder (TDR) and an accelerometer from which prey capture attempts were estimated. A Weddell seal was also fitted with a TDR. TDRs for both species recorded depth once per second. We quantified the within dive behaviour using an automated broken stick algorithm identifying the optimal number of segments within each dive. The vertical sinuosity of the segments was used to infer two types of behaviours, with highly sinuous segments indicating "hunting" and less sinuous segments indicating "transiting". Using the broken stick method the seals alternated between "hunting" and "transit" modes with an average of 6±2 and 7±0.02 behavioural phases within each dive for the Weddell seal and SES, respectively. In SES, 77% of prey capture attempts (identified from the acceleration data) occurred in highly sinuous phases ("hunting") as defined by our new approach. SES spent more time in transit mode within a dive, and hunting mostly occurred during the bottom phase. Conversely the Weddell seal spent more time in hunting mode which also occurred during bottom phase but occurred mostly at shallower depths. Such differences probably reflect different foraging tactics and habitat use. For both species, hunting time differs significantly from bottom time previously used as a proxy for the time spent foraging in a dive. The hunting time defined by our method therefore provides a more accurate fine-scale description of the seals' foraging behaviour.

DOI: 10.1371/journal.pone.0099329
PubMed: 24922323

Links to Exploration step

pubmed:24922323

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A new method to quantify within dive foraging behaviour in marine predators.</title>
<author>
<name sortKey="Heerah, Karine" sort="Heerah, Karine" uniqKey="Heerah K" first="Karine" last="Heerah">Karine Heerah</name>
<affiliation>
<nlm:affiliation>Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, CNRS-IRD-MNHN, Paris, France; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hindell, Mark" sort="Hindell, Mark" uniqKey="Hindell M" first="Mark" last="Hindell">Mark Hindell</name>
<affiliation>
<nlm:affiliation>Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia; Antarctic Climate and Ecosystem Cooperative Research Centre, University of Tasmania, Hobart, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guinet, Christophe" sort="Guinet, Christophe" uniqKey="Guinet C" first="Christophe" last="Guinet">Christophe Guinet</name>
<affiliation>
<nlm:affiliation>Centre d'Etude Biologique de Chizé, Villiers-en-bois, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Charrassin, Jean Benoit" sort="Charrassin, Jean Benoit" uniqKey="Charrassin J" first="Jean-Benoît" last="Charrassin">Jean-Benoît Charrassin</name>
<affiliation>
<nlm:affiliation>Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, CNRS-IRD-MNHN, Paris, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24922323</idno>
<idno type="pmid">24922323</idno>
<idno type="doi">10.1371/journal.pone.0099329</idno>
<idno type="wicri:Area/PubMed/Corpus">003695</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003695</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A new method to quantify within dive foraging behaviour in marine predators.</title>
<author>
<name sortKey="Heerah, Karine" sort="Heerah, Karine" uniqKey="Heerah K" first="Karine" last="Heerah">Karine Heerah</name>
<affiliation>
<nlm:affiliation>Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, CNRS-IRD-MNHN, Paris, France; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hindell, Mark" sort="Hindell, Mark" uniqKey="Hindell M" first="Mark" last="Hindell">Mark Hindell</name>
<affiliation>
<nlm:affiliation>Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia; Antarctic Climate and Ecosystem Cooperative Research Centre, University of Tasmania, Hobart, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guinet, Christophe" sort="Guinet, Christophe" uniqKey="Guinet C" first="Christophe" last="Guinet">Christophe Guinet</name>
<affiliation>
<nlm:affiliation>Centre d'Etude Biologique de Chizé, Villiers-en-bois, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Charrassin, Jean Benoit" sort="Charrassin, Jean Benoit" uniqKey="Charrassin J" first="Jean-Benoît" last="Charrassin">Jean-Benoît Charrassin</name>
<affiliation>
<nlm:affiliation>Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, CNRS-IRD-MNHN, Paris, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceleration</term>
<term>Algorithms</term>
<term>Animals</term>
<term>Antarctic Regions</term>
<term>Diving (physiology)</term>
<term>Ecosystem</term>
<term>Ethology (methods)</term>
<term>Female</term>
<term>Predatory Behavior (physiology)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Antarctic Regions</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Ethology</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Diving</term>
<term>Predatory Behavior</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acceleration</term>
<term>Algorithms</term>
<term>Animals</term>
<term>Ecosystem</term>
<term>Female</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Studies on diving behaviour classically divide a dive into three phases: the descent, bottom and ascent phases, with foraging assumed to occur during the bottom phase. The greater complexity of dive revealed through modern, high resolution data highlights the need to re-assess this approach and to consider a larger number of phases within individual dives. Two southern elephant seals (SES) were fitted with a head mounted Time Depth Recorder (TDR) and an accelerometer from which prey capture attempts were estimated. A Weddell seal was also fitted with a TDR. TDRs for both species recorded depth once per second. We quantified the within dive behaviour using an automated broken stick algorithm identifying the optimal number of segments within each dive. The vertical sinuosity of the segments was used to infer two types of behaviours, with highly sinuous segments indicating "hunting" and less sinuous segments indicating "transiting". Using the broken stick method the seals alternated between "hunting" and "transit" modes with an average of 6±2 and 7±0.02 behavioural phases within each dive for the Weddell seal and SES, respectively. In SES, 77% of prey capture attempts (identified from the acceleration data) occurred in highly sinuous phases ("hunting") as defined by our new approach. SES spent more time in transit mode within a dive, and hunting mostly occurred during the bottom phase. Conversely the Weddell seal spent more time in hunting mode which also occurred during bottom phase but occurred mostly at shallower depths. Such differences probably reflect different foraging tactics and habitat use. For both species, hunting time differs significantly from bottom time previously used as a proxy for the time spent foraging in a dive. The hunting time defined by our method therefore provides a more accurate fine-scale description of the seals' foraging behaviour.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24922323</PMID>
<DateCreated>
<Year>2014</Year>
<Month>06</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>08</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>A new method to quantify within dive foraging behaviour in marine predators.</ArticleTitle>
<Pagination>
<MedlinePgn>e99329</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0099329</ELocationID>
<Abstract>
<AbstractText>Studies on diving behaviour classically divide a dive into three phases: the descent, bottom and ascent phases, with foraging assumed to occur during the bottom phase. The greater complexity of dive revealed through modern, high resolution data highlights the need to re-assess this approach and to consider a larger number of phases within individual dives. Two southern elephant seals (SES) were fitted with a head mounted Time Depth Recorder (TDR) and an accelerometer from which prey capture attempts were estimated. A Weddell seal was also fitted with a TDR. TDRs for both species recorded depth once per second. We quantified the within dive behaviour using an automated broken stick algorithm identifying the optimal number of segments within each dive. The vertical sinuosity of the segments was used to infer two types of behaviours, with highly sinuous segments indicating "hunting" and less sinuous segments indicating "transiting". Using the broken stick method the seals alternated between "hunting" and "transit" modes with an average of 6±2 and 7±0.02 behavioural phases within each dive for the Weddell seal and SES, respectively. In SES, 77% of prey capture attempts (identified from the acceleration data) occurred in highly sinuous phases ("hunting") as defined by our new approach. SES spent more time in transit mode within a dive, and hunting mostly occurred during the bottom phase. Conversely the Weddell seal spent more time in hunting mode which also occurred during bottom phase but occurred mostly at shallower depths. Such differences probably reflect different foraging tactics and habitat use. For both species, hunting time differs significantly from bottom time previously used as a proxy for the time spent foraging in a dive. The hunting time defined by our method therefore provides a more accurate fine-scale description of the seals' foraging behaviour.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Heerah</LastName>
<ForeName>Karine</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, CNRS-IRD-MNHN, Paris, France; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hindell</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia; Antarctic Climate and Ecosystem Cooperative Research Centre, University of Tasmania, Hobart, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guinet</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Centre d'Etude Biologique de Chizé, Villiers-en-bois, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Charrassin</LastName>
<ForeName>Jean-Benoît</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, CNRS-IRD-MNHN, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2008;1134:267-319</RefSource>
<PMID Version="1">18566098</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Ecol. 2008 Sep;77(5):948-57</RefSource>
<PMID Version="1">18513336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2010 Nov 15;213(Pt 22):3874-80</RefSource>
<PMID Version="1">21037067</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Jul 7;475(7354):86-90</RefSource>
<PMID Version="1">21697831</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Ecol. 2013 Jan;82(1):72-83</RefSource>
<PMID Version="1">22881702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2199-204</RefSource>
<PMID Version="1">23341596</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2008 Mar;211(Pt 5):699-708</RefSource>
<PMID Version="1">18281332</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Popul Biol. 1976 Apr;9(2):129-36</RefSource>
<PMID Version="1">1273796</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 1992 Apr;165:181-94</RefSource>
<PMID Version="1">1588250</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Vet Res. 2006;2:8</RefSource>
<PMID Version="1">16469105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13705-10</RefSource>
<PMID Version="1">17693555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Nat. 2007 Nov;170(5):734-43</RefSource>
<PMID Version="1">17926295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2008 Jan;211(Pt 1):58-65</RefSource>
<PMID Version="1">18083733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vet Rec. 2002 Aug 24;151(8):235-40</RefSource>
<PMID Version="1">12219901</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000054" MajorTopicYN="N">Acceleration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000864" MajorTopicYN="N" Type="Geographic">Antarctic Regions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004242" MajorTopicYN="N">Diving</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005010" MajorTopicYN="N">Ethology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011235" MajorTopicYN="N">Predatory Behavior</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4055756</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>07</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24922323</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0099329</ArticleId>
<ArticleId IdType="pii">PONE-D-13-27788</ArticleId>
<ArticleId IdType="pmc">PMC4055756</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003695 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003695 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24922323
   |texte=   A new method to quantify within dive foraging behaviour in marine predators.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24922323" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024