Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

300-Fold increase in production of the Zn2+-dependent dechlorinase TrzN in soluble form via apoenzyme stabilization.

Identifieur interne : 003624 ( PubMed/Corpus ); précédent : 003623; suivant : 003625

300-Fold increase in production of the Zn2+-dependent dechlorinase TrzN in soluble form via apoenzyme stabilization.

Auteurs : Colin J. Jackson ; Christopher W. Coppin ; Paul D. Carr ; Alexey Aleksandrov ; Matthew Wilding ; Elena Sugrue ; Joanna Ubels ; Michael Paks ; Janet Newman ; Thomas S. Peat ; Robyn J. Russell ; Martin Field ; Martin Weik ; John G. Oakeshott ; Colin Scott

Source :

RBID : pubmed:24771025

English descriptors

Abstract

Microbial metalloenzymes constitute a large library of biocatalysts, a number of which have already been shown to catalyze the breakdown of toxic chemicals or industrially relevant chemical transformations. However, while there is considerable interest in harnessing these catalysts for biotechnology, for many of the enzymes, their large-scale production in active, soluble form in recombinant systems is a significant barrier to their use. In this work, we demonstrate that as few as three mutations can result in a 300-fold increase in the expression of soluble TrzN, an enzyme from Arthrobacter aurescens with environmental applications that catalyzes the hydrolysis of triazine herbicides, in Escherichia coli. Using a combination of X-ray crystallography, kinetic analysis, and computational simulation, we show that the majority of the improvement in expression is due to stabilization of the apoenzyme rather than the metal ion-bound holoenzyme. This provides a structural and mechanistic explanation for the observation that many compensatory mutations can increase levels of soluble-protein production without increasing the stability of the final, active form of the enzyme. This study provides a molecular understanding of the importance of the stability of metal ion free states to the accumulation of soluble protein and shows that differences between apoenzyme and holoenzyme structures can result in mutations affecting the stability of either state differently.

DOI: 10.1128/AEM.00916-14
PubMed: 24771025

Links to Exploration step

pubmed:24771025

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">300-Fold increase in production of the Zn2+-dependent dechlorinase TrzN in soluble form via apoenzyme stabilization.</title>
<author>
<name sortKey="Jackson, Colin J" sort="Jackson, Colin J" uniqKey="Jackson C" first="Colin J" last="Jackson">Colin J. Jackson</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia Institut de Biologie Structurale, Grenoble, France colin.jackson@anu.edu.au colin.scott@csiro.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coppin, Christopher W" sort="Coppin, Christopher W" uniqKey="Coppin C" first="Christopher W" last="Coppin">Christopher W. Coppin</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carr, Paul D" sort="Carr, Paul D" uniqKey="Carr P" first="Paul D" last="Carr">Paul D. Carr</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aleksandrov, Alexey" sort="Aleksandrov, Alexey" uniqKey="Aleksandrov A" first="Alexey" last="Aleksandrov">Alexey Aleksandrov</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Structurale, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilding, Matthew" sort="Wilding, Matthew" uniqKey="Wilding M" first="Matthew" last="Wilding">Matthew Wilding</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sugrue, Elena" sort="Sugrue, Elena" uniqKey="Sugrue E" first="Elena" last="Sugrue">Elena Sugrue</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ubels, Joanna" sort="Ubels, Joanna" uniqKey="Ubels J" first="Joanna" last="Ubels">Joanna Ubels</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paks, Michael" sort="Paks, Michael" uniqKey="Paks M" first="Michael" last="Paks">Michael Paks</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Newman, Janet" sort="Newman, Janet" uniqKey="Newman J" first="Janet" last="Newman">Janet Newman</name>
<affiliation>
<nlm:affiliation>CSIRO Materials, Science and Engineering, Parkville, Victoria, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peat, Thomas S" sort="Peat, Thomas S" uniqKey="Peat T" first="Thomas S" last="Peat">Thomas S. Peat</name>
<affiliation>
<nlm:affiliation>CSIRO Materials, Science and Engineering, Parkville, Victoria, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Russell, Robyn J" sort="Russell, Robyn J" uniqKey="Russell R" first="Robyn J" last="Russell">Robyn J. Russell</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Field, Martin" sort="Field, Martin" uniqKey="Field M" first="Martin" last="Field">Martin Field</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Structurale, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weik, Martin" sort="Weik, Martin" uniqKey="Weik M" first="Martin" last="Weik">Martin Weik</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Structurale, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oakeshott, John G" sort="Oakeshott, John G" uniqKey="Oakeshott J" first="John G" last="Oakeshott">John G. Oakeshott</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scott, Colin" sort="Scott, Colin" uniqKey="Scott C" first="Colin" last="Scott">Colin Scott</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia colin.jackson@anu.edu.au colin.scott@csiro.au.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24771025</idno>
<idno type="pmid">24771025</idno>
<idno type="doi">10.1128/AEM.00916-14</idno>
<idno type="wicri:Area/PubMed/Corpus">003624</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003624</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">300-Fold increase in production of the Zn2+-dependent dechlorinase TrzN in soluble form via apoenzyme stabilization.</title>
<author>
<name sortKey="Jackson, Colin J" sort="Jackson, Colin J" uniqKey="Jackson C" first="Colin J" last="Jackson">Colin J. Jackson</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia Institut de Biologie Structurale, Grenoble, France colin.jackson@anu.edu.au colin.scott@csiro.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coppin, Christopher W" sort="Coppin, Christopher W" uniqKey="Coppin C" first="Christopher W" last="Coppin">Christopher W. Coppin</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carr, Paul D" sort="Carr, Paul D" uniqKey="Carr P" first="Paul D" last="Carr">Paul D. Carr</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aleksandrov, Alexey" sort="Aleksandrov, Alexey" uniqKey="Aleksandrov A" first="Alexey" last="Aleksandrov">Alexey Aleksandrov</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Structurale, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilding, Matthew" sort="Wilding, Matthew" uniqKey="Wilding M" first="Matthew" last="Wilding">Matthew Wilding</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sugrue, Elena" sort="Sugrue, Elena" uniqKey="Sugrue E" first="Elena" last="Sugrue">Elena Sugrue</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ubels, Joanna" sort="Ubels, Joanna" uniqKey="Ubels J" first="Joanna" last="Ubels">Joanna Ubels</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paks, Michael" sort="Paks, Michael" uniqKey="Paks M" first="Michael" last="Paks">Michael Paks</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Newman, Janet" sort="Newman, Janet" uniqKey="Newman J" first="Janet" last="Newman">Janet Newman</name>
<affiliation>
<nlm:affiliation>CSIRO Materials, Science and Engineering, Parkville, Victoria, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peat, Thomas S" sort="Peat, Thomas S" uniqKey="Peat T" first="Thomas S" last="Peat">Thomas S. Peat</name>
<affiliation>
<nlm:affiliation>CSIRO Materials, Science and Engineering, Parkville, Victoria, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Russell, Robyn J" sort="Russell, Robyn J" uniqKey="Russell R" first="Robyn J" last="Russell">Robyn J. Russell</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Field, Martin" sort="Field, Martin" uniqKey="Field M" first="Martin" last="Field">Martin Field</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Structurale, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weik, Martin" sort="Weik, Martin" uniqKey="Weik M" first="Martin" last="Weik">Martin Weik</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Structurale, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oakeshott, John G" sort="Oakeshott, John G" uniqKey="Oakeshott J" first="John G" last="Oakeshott">John G. Oakeshott</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scott, Colin" sort="Scott, Colin" uniqKey="Scott C" first="Colin" last="Scott">Colin Scott</name>
<affiliation>
<nlm:affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia colin.jackson@anu.edu.au colin.scott@csiro.au.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apoenzymes (biosynthesis)</term>
<term>Apoenzymes (chemistry)</term>
<term>Apoenzymes (genetics)</term>
<term>Arthrobacter (enzymology)</term>
<term>Computer Simulation</term>
<term>Crystallography, X-Ray</term>
<term>Enzyme Stability</term>
<term>Escherichia coli (enzymology)</term>
<term>Escherichia coli (metabolism)</term>
<term>Herbicides (metabolism)</term>
<term>Hydrolases (biosynthesis)</term>
<term>Hydrolases (chemistry)</term>
<term>Hydrolases (genetics)</term>
<term>Hydrolysis</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Mutant Proteins (biosynthesis)</term>
<term>Mutant Proteins (chemistry)</term>
<term>Mutant Proteins (genetics)</term>
<term>Mutation, Missense</term>
<term>Protein Conformation</term>
<term>Recombinant Proteins (biosynthesis)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Solubility</term>
<term>Triazines (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Apoenzymes</term>
<term>Hydrolases</term>
<term>Mutant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Apoenzymes</term>
<term>Hydrolases</term>
<term>Mutant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Apoenzymes</term>
<term>Hydrolases</term>
<term>Mutant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arthrobacter</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Herbicides</term>
<term>Triazines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Crystallography, X-Ray</term>
<term>Enzyme Stability</term>
<term>Hydrolysis</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Mutation, Missense</term>
<term>Protein Conformation</term>
<term>Solubility</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microbial metalloenzymes constitute a large library of biocatalysts, a number of which have already been shown to catalyze the breakdown of toxic chemicals or industrially relevant chemical transformations. However, while there is considerable interest in harnessing these catalysts for biotechnology, for many of the enzymes, their large-scale production in active, soluble form in recombinant systems is a significant barrier to their use. In this work, we demonstrate that as few as three mutations can result in a 300-fold increase in the expression of soluble TrzN, an enzyme from Arthrobacter aurescens with environmental applications that catalyzes the hydrolysis of triazine herbicides, in Escherichia coli. Using a combination of X-ray crystallography, kinetic analysis, and computational simulation, we show that the majority of the improvement in expression is due to stabilization of the apoenzyme rather than the metal ion-bound holoenzyme. This provides a structural and mechanistic explanation for the observation that many compensatory mutations can increase levels of soluble-protein production without increasing the stability of the final, active form of the enzyme. This study provides a molecular understanding of the importance of the stability of metal ion free states to the accumulation of soluble protein and shows that differences between apoenzyme and holoenzyme structures can result in mutations affecting the stability of either state differently.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24771025</PMID>
<DateCreated>
<Year>2014</Year>
<Month>07</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>80</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl. Environ. Microbiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>300-Fold increase in production of the Zn2+-dependent dechlorinase TrzN in soluble form via apoenzyme stabilization.</ArticleTitle>
<Pagination>
<MedlinePgn>4003-11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00916-14</ELocationID>
<Abstract>
<AbstractText>Microbial metalloenzymes constitute a large library of biocatalysts, a number of which have already been shown to catalyze the breakdown of toxic chemicals or industrially relevant chemical transformations. However, while there is considerable interest in harnessing these catalysts for biotechnology, for many of the enzymes, their large-scale production in active, soluble form in recombinant systems is a significant barrier to their use. In this work, we demonstrate that as few as three mutations can result in a 300-fold increase in the expression of soluble TrzN, an enzyme from Arthrobacter aurescens with environmental applications that catalyzes the hydrolysis of triazine herbicides, in Escherichia coli. Using a combination of X-ray crystallography, kinetic analysis, and computational simulation, we show that the majority of the improvement in expression is due to stabilization of the apoenzyme rather than the metal ion-bound holoenzyme. This provides a structural and mechanistic explanation for the observation that many compensatory mutations can increase levels of soluble-protein production without increasing the stability of the final, active form of the enzyme. This study provides a molecular understanding of the importance of the stability of metal ion free states to the accumulation of soluble protein and shows that differences between apoenzyme and holoenzyme structures can result in mutations affecting the stability of either state differently.</AbstractText>
<CopyrightInformation>Copyright © 2014, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jackson</LastName>
<ForeName>Colin J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia Institut de Biologie Structurale, Grenoble, France colin.jackson@anu.edu.au colin.scott@csiro.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coppin</LastName>
<ForeName>Christopher W</ForeName>
<Initials>CW</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carr</LastName>
<ForeName>Paul D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aleksandrov</LastName>
<ForeName>Alexey</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institut de Biologie Structurale, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wilding</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sugrue</LastName>
<ForeName>Elena</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ubels</LastName>
<ForeName>Joanna</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paks</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Newman</LastName>
<ForeName>Janet</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Materials, Science and Engineering, Parkville, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peat</LastName>
<ForeName>Thomas S</ForeName>
<Initials>TS</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Materials, Science and Engineering, Parkville, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Russell</LastName>
<ForeName>Robyn J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Field</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institut de Biologie Structurale, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weik</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institut de Biologie Structurale, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oakeshott</LastName>
<ForeName>John G</ForeName>
<Initials>JG</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scott</LastName>
<ForeName>Colin</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Ecosystems Sciences, Black Mountain, Canberra, Australian Capital Territory, Australia colin.jackson@anu.edu.au colin.scott@csiro.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>1HZY</AccessionNumber>
<AccessionNumber>1PTA</AccessionNumber>
<AccessionNumber>3LS9</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001051">Apoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006540">Herbicides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050505">Mutant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014227">Triazines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.-</RegistryNumber>
<NameOfSubstance UI="D006867">Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2009 Aug;75(15):5153-6</RefSource>
<PMID Version="1">19502439</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Environ Manage. 2010 Oct;91(10):2075-8</RefSource>
<PMID Version="1">20570036</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2006 Aug 1;397(3):501-8</RefSource>
<PMID Version="1">16686603</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Eng Des Sel. 2005 Jan;18(1):51-8</RefSource>
<PMID Version="1">15790580</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Microbiol Biotechnol. 2012 Dec;96(5):1175-89</RefSource>
<PMID Version="1">23076592</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</RefSource>
<PMID Version="1">20383002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 1997 May;28(1):72-82</RefSource>
<PMID Version="1">9144792</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2002 Jul 5;320(2):369-87</RefSource>
<PMID Version="1">12079393</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2007 Jun 22;369(5):1318-32</RefSource>
<PMID Version="1">17482644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Sci Technol. 2006 Feb 15;40(4):1163-71</RefSource>
<PMID Version="1">16572770</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2002 Aug 9;321(2):285-96</RefSource>
<PMID Version="1">12144785</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2009 Jul 30;30(10):1545-614</RefSource>
<PMID Version="1">19444816</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67</RefSource>
<PMID Version="1">22505256</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2009 Mar 1;418(2):431-41</RefSource>
<PMID Version="1">19000034</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2010 May 19;98(10):2309-16</RefSource>
<PMID Version="1">20483340</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5476-80</RefSource>
<PMID Version="1">11960004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Expr Purif. 2005 Jun;41(2):433-40</RefSource>
<PMID Version="1">15866732</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2004 Apr 7;126(13):4167-80</RefSource>
<PMID Version="1">15053606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4612-7</RefSource>
<PMID Version="1">20194757</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2008 Feb;4(2):e1000002</RefSource>
<PMID Version="1">18463696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):282-92</RefSource>
<PMID Version="1">21460446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Water Res. 2008 Jul;42(13):3315-26</RefSource>
<PMID Version="1">18502469</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microb Cell Fact. 2011;10:9</RefSource>
<PMID Version="1">21320350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1998 Nov 26;396(6709):336-42</RefSource>
<PMID Version="1">9845070</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2012;3:1257</RefSource>
<PMID Version="1">23212386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 Oct 1;285(40):30606-14</RefSource>
<PMID Version="1">20659898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2012 Jul;9(7):671-5</RefSource>
<PMID Version="1">22930834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2013 Sep 23;425(18):3403-14</RefSource>
<PMID Version="1">23810906</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2008 Oct 29;130(43):14129-38</RefSource>
<PMID Version="1">18831553</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Chem. 2005 Dec;26(16):1781-802</RefSource>
<PMID Version="1">16222654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2007 Feb 1;66(2):500-6</RefSource>
<PMID Version="1">17096428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Chim. 2001 Sep-Oct;91(9-10):531-40</RefSource>
<PMID Version="1">11770153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Chem Biol. 1998 Apr;2(2):155-8</RefSource>
<PMID Version="1">9667942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1995 Jun 27;34(25):7973-8</RefSource>
<PMID Version="1">7794910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(5):e19425</RefSource>
<PMID Version="1">21625626</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2009 Apr;75(7):2184-91</RefSource>
<PMID Version="1">19201959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21631-6</RefSource>
<PMID Version="1">19966226</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Inorg Biochem. 2006 Dec;100(12):2101-7</RefSource>
<PMID Version="1">17055583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Microbiol Lett. 2002 Jan 2;206(1):75-9</RefSource>
<PMID Version="1">11786260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2001 Jun 29;292(5526):2488-92</RefSource>
<PMID Version="1">11397910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5869-74</RefSource>
<PMID Version="1">16581913</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2009 Jun 4;459(7247):668-73</RefSource>
<PMID Version="1">19494908</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Dec 14;444(7121):929-32</RefSource>
<PMID Version="1">17122770</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2004 Jul;70(7):4402-7</RefSource>
<PMID Version="1">15240330</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67</RefSource>
<PMID Version="1">21460454</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 1994 Oct 15;2(10):945-51</RefSource>
<PMID Version="1">7866746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Org Biomol Chem. 2005 Dec 21;3(24):4343-50</RefSource>
<PMID Version="1">16327895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1994 Dec 20;33(50):15001-7</RefSource>
<PMID Version="1">7999757</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Recognit. 2010 Mar-Apr;23(2):117-27</RefSource>
<PMID Version="1">19693787</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 2006 Aug;188(16):5859-64</RefSource>
<PMID Version="1">16885454</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2005 May 3;44(17):6383-91</RefSource>
<PMID Version="1">15850372</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2005 Dec 1;61(4):704-21</RefSource>
<PMID Version="1">16231289</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8</RefSource>
<PMID Version="1">15980494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 1998 May;64(5):1694-9</RefSource>
<PMID Version="1">9572938</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10177-82</RefSource>
<PMID Version="1">23733941</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Metallomics. 2013 Apr;5(4):372-83</RefSource>
<PMID Version="1">23446818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Chem Biol. 2003 Feb;7(1):33-8</RefSource>
<PMID Version="1">12547424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32</RefSource>
<PMID Version="1">20124692</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):22-5</RefSource>
<PMID Version="1">20057045</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001051" MajorTopicYN="N">Apoenzymes</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001173" MajorTopicYN="N">Arthrobacter</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006540" MajorTopicYN="N">Herbicides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006867" MajorTopicYN="N">Hydrolases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050505" MajorTopicYN="N">Mutant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020125" MajorTopicYN="N">Mutation, Missense</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014227" MajorTopicYN="N">Triazines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4054219</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24771025</ArticleId>
<ArticleId IdType="pii">AEM.00916-14</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00916-14</ArticleId>
<ArticleId IdType="pmc">PMC4054219</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003624 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003624 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24771025
   |texte=   300-Fold increase in production of the Zn2+-dependent dechlorinase TrzN in soluble form via apoenzyme stabilization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24771025" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024