Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RAD50 phosphorylation promotes ATR downstream signaling and DNA restart following replication stress.

Identifieur interne : 003545 ( PubMed/Corpus ); précédent : 003544; suivant : 003546

RAD50 phosphorylation promotes ATR downstream signaling and DNA restart following replication stress.

Auteurs : Magtouf Gatei ; Amanda W. Kijas ; Denis Biard ; Thilo Dörk ; Martin F. Lavin

Source :

RBID : pubmed:24694934

English descriptors

Abstract

The MRE11/RAD50/NBN (MRN) complex plays a key role in detecting DNA double-strand breaks, recruiting and activating ataxia-telangiectasia mutated and in processing the breaks. Members of this complex also act as adaptor molecules for downstream signaling to the cell cycle and other cellular processes. Somewhat more controversial are the results to support a role for MRN in the ataxia-telangiectasia and Rad3-related (ATR) activation and signaling. We provide evidence that RAD50 is required for ATR activation in mammalian cells in response to DNA replication stress. It is in turn phosphorylated at a specific site (S635) by ATR, which is required for ATR signaling through Chk1 and other downstream substrates. We find that RAD50 phosphorylation is essential for DNA replication restart by promoting loading of cohesin at these sites. We also demonstrate that replication stress-induced RAD50 phosphorylation is functionally significant for cell survival and cell cycle checkpoint activation. These results highlight the importance of the adaptor role for a member of the MRN complex in all aspects of the response to DNA replication stress.

DOI: 10.1093/hmg/ddu141
PubMed: 24694934

Links to Exploration step

pubmed:24694934

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RAD50 phosphorylation promotes ATR downstream signaling and DNA restart following replication stress.</title>
<author>
<name sortKey="Gatei, Magtouf" sort="Gatei, Magtouf" uniqKey="Gatei M" first="Magtouf" last="Gatei">Magtouf Gatei</name>
<affiliation>
<nlm:affiliation>Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kijas, Amanda W" sort="Kijas, Amanda W" uniqKey="Kijas A" first="Amanda W" last="Kijas">Amanda W. Kijas</name>
<affiliation>
<nlm:affiliation>Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Biard, Denis" sort="Biard, Denis" uniqKey="Biard D" first="Denis" last="Biard">Denis Biard</name>
<affiliation>
<nlm:affiliation>CEA, DSV/iMETI/SEPIA; BP6, 92265 Fontenay-aux-Roses Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dork, Thilo" sort="Dork, Thilo" uniqKey="Dork T" first="Thilo" last="Dörk">Thilo Dörk</name>
<affiliation>
<nlm:affiliation>Clinics of Obstetrics and Gynaecology, Hannover Medical School, Gynaecology Research Unit, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lavin, Martin F" sort="Lavin, Martin F" uniqKey="Lavin M" first="Martin F" last="Lavin">Martin F. Lavin</name>
<affiliation>
<nlm:affiliation>Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia Centre for Clinical Research, University of Queensland, Building 71/918, Royal Brisbane & Women's Hospital Campus, Herston, QLD 4029, Australia martin.lavin@qimrberghofer.edu.au m.lavin@uq.edu.au.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24694934</idno>
<idno type="pmid">24694934</idno>
<idno type="doi">10.1093/hmg/ddu141</idno>
<idno type="wicri:Area/PubMed/Corpus">003545</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003545</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RAD50 phosphorylation promotes ATR downstream signaling and DNA restart following replication stress.</title>
<author>
<name sortKey="Gatei, Magtouf" sort="Gatei, Magtouf" uniqKey="Gatei M" first="Magtouf" last="Gatei">Magtouf Gatei</name>
<affiliation>
<nlm:affiliation>Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kijas, Amanda W" sort="Kijas, Amanda W" uniqKey="Kijas A" first="Amanda W" last="Kijas">Amanda W. Kijas</name>
<affiliation>
<nlm:affiliation>Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Biard, Denis" sort="Biard, Denis" uniqKey="Biard D" first="Denis" last="Biard">Denis Biard</name>
<affiliation>
<nlm:affiliation>CEA, DSV/iMETI/SEPIA; BP6, 92265 Fontenay-aux-Roses Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dork, Thilo" sort="Dork, Thilo" uniqKey="Dork T" first="Thilo" last="Dörk">Thilo Dörk</name>
<affiliation>
<nlm:affiliation>Clinics of Obstetrics and Gynaecology, Hannover Medical School, Gynaecology Research Unit, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lavin, Martin F" sort="Lavin, Martin F" uniqKey="Lavin M" first="Martin F" last="Lavin">Martin F. Lavin</name>
<affiliation>
<nlm:affiliation>Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia Centre for Clinical Research, University of Queensland, Building 71/918, Royal Brisbane & Women's Hospital Campus, Herston, QLD 4029, Australia martin.lavin@qimrberghofer.edu.au m.lavin@uq.edu.au.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Human molecular genetics</title>
<idno type="eISSN">1460-2083</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ataxia Telangiectasia (pathology)</term>
<term>Cell Line</term>
<term>Checkpoint Kinase 1</term>
<term>DNA Breaks, Double-Stranded</term>
<term>DNA Repair Enzymes (metabolism)</term>
<term>DNA Replication</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Fibroblasts</term>
<term>Humans</term>
<term>Phosphorylation</term>
<term>Protein Kinases (metabolism)</term>
<term>Serine (metabolism)</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA Repair Enzymes</term>
<term>DNA-Binding Proteins</term>
<term>Protein Kinases</term>
<term>Serine</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Checkpoint Kinase 1</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Ataxia Telangiectasia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>DNA Breaks, Double-Stranded</term>
<term>DNA Replication</term>
<term>Fibroblasts</term>
<term>Humans</term>
<term>Phosphorylation</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The MRE11/RAD50/NBN (MRN) complex plays a key role in detecting DNA double-strand breaks, recruiting and activating ataxia-telangiectasia mutated and in processing the breaks. Members of this complex also act as adaptor molecules for downstream signaling to the cell cycle and other cellular processes. Somewhat more controversial are the results to support a role for MRN in the ataxia-telangiectasia and Rad3-related (ATR) activation and signaling. We provide evidence that RAD50 is required for ATR activation in mammalian cells in response to DNA replication stress. It is in turn phosphorylated at a specific site (S635) by ATR, which is required for ATR signaling through Chk1 and other downstream substrates. We find that RAD50 phosphorylation is essential for DNA replication restart by promoting loading of cohesin at these sites. We also demonstrate that replication stress-induced RAD50 phosphorylation is functionally significant for cell survival and cell cycle checkpoint activation. These results highlight the importance of the adaptor role for a member of the MRN complex in all aspects of the response to DNA replication stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24694934</PMID>
<DateCreated>
<Year>2014</Year>
<Month>07</Month>
<Day>19</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2083</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Human molecular genetics</Title>
<ISOAbbreviation>Hum. Mol. Genet.</ISOAbbreviation>
</Journal>
<ArticleTitle>RAD50 phosphorylation promotes ATR downstream signaling and DNA restart following replication stress.</ArticleTitle>
<Pagination>
<MedlinePgn>4232-48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/hmg/ddu141</ELocationID>
<Abstract>
<AbstractText>The MRE11/RAD50/NBN (MRN) complex plays a key role in detecting DNA double-strand breaks, recruiting and activating ataxia-telangiectasia mutated and in processing the breaks. Members of this complex also act as adaptor molecules for downstream signaling to the cell cycle and other cellular processes. Somewhat more controversial are the results to support a role for MRN in the ataxia-telangiectasia and Rad3-related (ATR) activation and signaling. We provide evidence that RAD50 is required for ATR activation in mammalian cells in response to DNA replication stress. It is in turn phosphorylated at a specific site (S635) by ATR, which is required for ATR signaling through Chk1 and other downstream substrates. We find that RAD50 phosphorylation is essential for DNA replication restart by promoting loading of cohesin at these sites. We also demonstrate that replication stress-induced RAD50 phosphorylation is functionally significant for cell survival and cell cycle checkpoint activation. These results highlight the importance of the adaptor role for a member of the MRN complex in all aspects of the response to DNA replication stress.</AbstractText>
<CopyrightInformation>© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gatei</LastName>
<ForeName>Magtouf</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kijas</LastName>
<ForeName>Amanda W</ForeName>
<Initials>AW</Initials>
<AffiliationInfo>
<Affiliation>Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Biard</LastName>
<ForeName>Denis</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>CEA, DSV/iMETI/SEPIA; BP6, 92265 Fontenay-aux-Roses Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dörk</LastName>
<ForeName>Thilo</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Clinics of Obstetrics and Gynaecology, Hannover Medical School, Gynaecology Research Unit, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lavin</LastName>
<ForeName>Martin F</ForeName>
<Initials>MF</Initials>
<AffiliationInfo>
<Affiliation>Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia Centre for Clinical Research, University of Queensland, Building 71/918, Royal Brisbane & Women's Hospital Campus, Herston, QLD 4029, Australia martin.lavin@qimrberghofer.edu.au m.lavin@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Hum Mol Genet</MedlineTA>
<NlmUniqueID>9208958</NlmUniqueID>
<ISSNLinking>0964-6906</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C112158">Rad50 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>452VLY9402</RegistryNumber>
<NameOfSubstance UI="D012694">Serine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C000605867">CHEK1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000071877">Checkpoint Kinase 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.5.1.-</RegistryNumber>
<NameOfSubstance UI="D045643">DNA Repair Enzymes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001260" MajorTopicYN="N">Ataxia Telangiectasia</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071877" MajorTopicYN="N">Checkpoint Kinase 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053903" MajorTopicYN="Y">DNA Breaks, Double-Stranded</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045643" MajorTopicYN="N">DNA Repair Enzymes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="Y">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005347" MajorTopicYN="N">Fibroblasts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012694" MajorTopicYN="N">Serine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24694934</ArticleId>
<ArticleId IdType="pii">ddu141</ArticleId>
<ArticleId IdType="doi">10.1093/hmg/ddu141</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003545 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003545 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24694934
   |texte=   RAD50 phosphorylation promotes ATR downstream signaling and DNA restart following replication stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24694934" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024