Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estimating trans-seasonal variability in water column biomass for a highly migratory, deep diving predator.

Identifieur interne : 003326 ( PubMed/Corpus ); précédent : 003325; suivant : 003327

Estimating trans-seasonal variability in water column biomass for a highly migratory, deep diving predator.

Auteurs : Malcolm D. O'Toole ; Mary-Anne Lea ; Christophe Guinet ; Mark A. Hindell

Source :

RBID : pubmed:25427104

English descriptors

Abstract

The deployment of animal-borne electronic tags is revolutionizing our understanding of how pelagic species respond to their environment by providing in situ oceanographic information such as temperature, salinity, and light measurements. These tags, deployed on pelagic animals, provide data that can be used to study the ecological context of their foraging behaviour and surrounding environment. Satellite-derived measures of ocean colour reveal temporal and spatial variability of surface chlorophyll-a (a useful proxy for phytoplankton distribution). However, this information can be patchy in space and time resulting in poor correspondence with marine animal behaviour. Alternatively, light data collected by animal-borne tag sensors can be used to estimate chlorophyll-a distribution. Here, we use light level and depth data to generate a phytoplankton index that matches daily seal movements. Time-depth-light recorders (TDLRs) were deployed on 89 southern elephant seals (Mirounga leonina) over a period of 6 years (1999-2005). TDLR data were used to calculate integrated light attenuation of the top 250 m of the water column (LA(250)), which provided an index of phytoplankton density at the daily scale that was concurrent with the movement and behaviour of seals throughout their entire foraging trip. These index values were consistent with typical seasonal chl-a patterns as measured from 8-daySea-viewing Wide Field-of-view Sensor (SeaWiFs) images. The availability of data recorded by the TDLRs was far greater than concurrent remotely sensed chl-a at higher latitudes and during winter months. Improving the spatial and temporal availability of phytoplankton information concurrent with animal behaviour has ecological implications for understanding the movement of deep diving predators in relation to lower trophic levels in the Southern Ocean. Light attenuation profiles recorded by animal-borne electronic tags can be used more broadly and routinely to estimate lower trophic distribution at sea in relation to deep diving predator foraging behaviour.

DOI: 10.1371/journal.pone.0113171
PubMed: 25427104

Links to Exploration step

pubmed:25427104

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Estimating trans-seasonal variability in water column biomass for a highly migratory, deep diving predator.</title>
<author>
<name sortKey="O Toole, Malcolm D" sort="O Toole, Malcolm D" uniqKey="O Toole M" first="Malcolm D" last="O'Toole">Malcolm D. O'Toole</name>
<affiliation>
<nlm:affiliation>Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lea, Mary Anne" sort="Lea, Mary Anne" uniqKey="Lea M" first="Mary-Anne" last="Lea">Mary-Anne Lea</name>
<affiliation>
<nlm:affiliation>Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guinet, Christophe" sort="Guinet, Christophe" uniqKey="Guinet C" first="Christophe" last="Guinet">Christophe Guinet</name>
<affiliation>
<nlm:affiliation>Marine Predator Department, Centre détudes biologiques de Chizé, Villiers-en-Bois, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hindell, Mark A" sort="Hindell, Mark A" uniqKey="Hindell M" first="Mark A" last="Hindell">Mark A. Hindell</name>
<affiliation>
<nlm:affiliation>Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25427104</idno>
<idno type="pmid">25427104</idno>
<idno type="doi">10.1371/journal.pone.0113171</idno>
<idno type="wicri:Area/PubMed/Corpus">003326</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003326</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Estimating trans-seasonal variability in water column biomass for a highly migratory, deep diving predator.</title>
<author>
<name sortKey="O Toole, Malcolm D" sort="O Toole, Malcolm D" uniqKey="O Toole M" first="Malcolm D" last="O'Toole">Malcolm D. O'Toole</name>
<affiliation>
<nlm:affiliation>Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lea, Mary Anne" sort="Lea, Mary Anne" uniqKey="Lea M" first="Mary-Anne" last="Lea">Mary-Anne Lea</name>
<affiliation>
<nlm:affiliation>Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guinet, Christophe" sort="Guinet, Christophe" uniqKey="Guinet C" first="Christophe" last="Guinet">Christophe Guinet</name>
<affiliation>
<nlm:affiliation>Marine Predator Department, Centre détudes biologiques de Chizé, Villiers-en-Bois, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hindell, Mark A" sort="Hindell, Mark A" uniqKey="Hindell M" first="Mark A" last="Hindell">Mark A. Hindell</name>
<affiliation>
<nlm:affiliation>Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal Migration (physiology)</term>
<term>Animals</term>
<term>Carnivory (physiology)</term>
<term>Chlorophyll (biosynthesis)</term>
<term>Diving (physiology)</term>
<term>Ecosystem</term>
<term>Female</term>
<term>Food Chain</term>
<term>Light</term>
<term>Mobile Applications</term>
<term>Phytoplankton (growth & development)</term>
<term>Predatory Behavior (physiology)</term>
<term>Seals, Earless (physiology)</term>
<term>Seasons</term>
<term>Seawater (analysis)</term>
<term>Seawater (chemistry)</term>
<term>Spatio-Temporal Analysis</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Chlorophyll</term>
</keywords>
<keywords scheme="MESH" qualifier="analysis" xml:lang="en">
<term>Seawater</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Seawater</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Phytoplankton</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Animal Migration</term>
<term>Carnivory</term>
<term>Diving</term>
<term>Predatory Behavior</term>
<term>Seals, Earless</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Ecosystem</term>
<term>Female</term>
<term>Food Chain</term>
<term>Light</term>
<term>Mobile Applications</term>
<term>Seasons</term>
<term>Spatio-Temporal Analysis</term>
<term>Temperature</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The deployment of animal-borne electronic tags is revolutionizing our understanding of how pelagic species respond to their environment by providing in situ oceanographic information such as temperature, salinity, and light measurements. These tags, deployed on pelagic animals, provide data that can be used to study the ecological context of their foraging behaviour and surrounding environment. Satellite-derived measures of ocean colour reveal temporal and spatial variability of surface chlorophyll-a (a useful proxy for phytoplankton distribution). However, this information can be patchy in space and time resulting in poor correspondence with marine animal behaviour. Alternatively, light data collected by animal-borne tag sensors can be used to estimate chlorophyll-a distribution. Here, we use light level and depth data to generate a phytoplankton index that matches daily seal movements. Time-depth-light recorders (TDLRs) were deployed on 89 southern elephant seals (Mirounga leonina) over a period of 6 years (1999-2005). TDLR data were used to calculate integrated light attenuation of the top 250 m of the water column (LA(250)), which provided an index of phytoplankton density at the daily scale that was concurrent with the movement and behaviour of seals throughout their entire foraging trip. These index values were consistent with typical seasonal chl-a patterns as measured from 8-daySea-viewing Wide Field-of-view Sensor (SeaWiFs) images. The availability of data recorded by the TDLRs was far greater than concurrent remotely sensed chl-a at higher latitudes and during winter months. Improving the spatial and temporal availability of phytoplankton information concurrent with animal behaviour has ecological implications for understanding the movement of deep diving predators in relation to lower trophic levels in the Southern Ocean. Light attenuation profiles recorded by animal-borne electronic tags can be used more broadly and routinely to estimate lower trophic distribution at sea in relation to deep diving predator foraging behaviour.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25427104</PMID>
<DateCreated>
<Year>2014</Year>
<Month>11</Month>
<Day>27</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Estimating trans-seasonal variability in water column biomass for a highly migratory, deep diving predator.</ArticleTitle>
<Pagination>
<MedlinePgn>e113171</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0113171</ELocationID>
<Abstract>
<AbstractText>The deployment of animal-borne electronic tags is revolutionizing our understanding of how pelagic species respond to their environment by providing in situ oceanographic information such as temperature, salinity, and light measurements. These tags, deployed on pelagic animals, provide data that can be used to study the ecological context of their foraging behaviour and surrounding environment. Satellite-derived measures of ocean colour reveal temporal and spatial variability of surface chlorophyll-a (a useful proxy for phytoplankton distribution). However, this information can be patchy in space and time resulting in poor correspondence with marine animal behaviour. Alternatively, light data collected by animal-borne tag sensors can be used to estimate chlorophyll-a distribution. Here, we use light level and depth data to generate a phytoplankton index that matches daily seal movements. Time-depth-light recorders (TDLRs) were deployed on 89 southern elephant seals (Mirounga leonina) over a period of 6 years (1999-2005). TDLR data were used to calculate integrated light attenuation of the top 250 m of the water column (LA(250)), which provided an index of phytoplankton density at the daily scale that was concurrent with the movement and behaviour of seals throughout their entire foraging trip. These index values were consistent with typical seasonal chl-a patterns as measured from 8-daySea-viewing Wide Field-of-view Sensor (SeaWiFs) images. The availability of data recorded by the TDLRs was far greater than concurrent remotely sensed chl-a at higher latitudes and during winter months. Improving the spatial and temporal availability of phytoplankton information concurrent with animal behaviour has ecological implications for understanding the movement of deep diving predators in relation to lower trophic levels in the Southern Ocean. Light attenuation profiles recorded by animal-borne electronic tags can be used more broadly and routinely to estimate lower trophic distribution at sea in relation to deep diving predator foraging behaviour.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>O'Toole</LastName>
<ForeName>Malcolm D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lea</LastName>
<ForeName>Mary-Anne</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guinet</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Marine Predator Department, Centre détudes biologiques de Chizé, Villiers-en-Bois, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hindell</LastName>
<ForeName>Mark A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YF5Q9EJC8Y</RegistryNumber>
<NameOfSubstance UI="C032081">chlorophyll a</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(10):e7324</RefSource>
<PMID Version="1">19823684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Opt. 2001 Jun 20;40(18):2929-45</RefSource>
<PMID Version="1">18357311</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11634-9</RefSource>
<PMID Version="1">18695241</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(8):e43565</RefSource>
<PMID Version="1">22952706</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(10):e47444</RefSource>
<PMID Version="1">23082166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vet Rec. 2002 Aug 24;151(8):235-40</RefSource>
<PMID Version="1">12219901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vet Rec. 2000 Feb 26;146(9):251-4</RefSource>
<PMID Version="1">10737295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13705-10</RefSource>
<PMID Version="1">17693555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Integr Comp Biol. 2010 Dec;50(6):1018-30</RefSource>
<PMID Version="1">21558256</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Lett. 2009 Aug 23;5(4):473-6</RefSource>
<PMID Version="1">19447814</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18366-70</RefSource>
<PMID Version="1">20974927</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D025041" MajorTopicYN="N">Animal Migration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060435" MajorTopicYN="N">Carnivory</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004242" MajorTopicYN="N">Diving</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020387" MajorTopicYN="N">Food Chain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063731" MajorTopicYN="Y">Mobile Applications</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010839" MajorTopicYN="N">Phytoplankton</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011235" MajorTopicYN="N">Predatory Behavior</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046048" MajorTopicYN="N">Seals, Earless</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012623" MajorTopicYN="N">Seawater</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062211" MajorTopicYN="Y">Spatio-Temporal Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4245103</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25427104</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0113171</ArticleId>
<ArticleId IdType="pii">PONE-D-14-02627</ArticleId>
<ArticleId IdType="pmc">PMC4245103</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003326 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003326 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25427104
   |texte=   Estimating trans-seasonal variability in water column biomass for a highly migratory, deep diving predator.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25427104" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024