Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes.

Identifieur interne : 003223 ( PubMed/Corpus ); précédent : 003222; suivant : 003224

Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes.

Auteurs : Sylvain Giroud ; Sandrine Zahn ; François Criscuolo ; Isabelle Chery ; Stéphane Blanc ; Christopher Turbill ; Thomas Ruf

Source :

RBID : pubmed:25377448

English descriptors

Abstract

Torpor is thought to slow age-related processes and to sustain growth and fattening of young individuals. Energy allocation into these processes represents a challenge for juveniles, especially for those born late in the season. We tested the hypothesis that late-born juvenile garden dormice (Eliomys quercinus) fed ad libitum ('AL', n = 9) or intermittently fasted ('IF', n = 9) use short torpor bouts to enhance growth and fat accumulation to survive winter. IF juveniles displayed more frequent and longer torpor bouts, compared with AL individuals before hibernation. Torpor frequency correlated negatively with energy expenditure and water turnover. Hence, IF juveniles gained mass at the same rate, reached similar pre-hibernation fattening and displayed identical hibernating patterns and mass losses as AL animals. We found no group differences in relative telomere length (RTL), an indicator of ageing, during the period of highest summer mass gain, despite greater torpor use by IF juveniles. Percentage change in RTL was negatively associated with mean and total euthermic durations among all individuals during hibernation. We conclude that torpor use promotes fattening in late-born juvenile dormice prior to hibernation. Furthermore, we provided the first evidence for a functional link between time spent in euthermy and ageing processes over winter.

DOI: 10.1098/rspb.2014.1131
PubMed: 25377448

Links to Exploration step

pubmed:25377448

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes.</title>
<author>
<name sortKey="Giroud, Sylvain" sort="Giroud, Sylvain" uniqKey="Giroud S" first="Sylvain" last="Giroud">Sylvain Giroud</name>
<affiliation>
<nlm:affiliation>Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160 Vienna, Austria sylvain.giroud@vetmeduni.ac.at.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zahn, Sandrine" sort="Zahn, Sandrine" uniqKey="Zahn S" first="Sandrine" last="Zahn">Sandrine Zahn</name>
<affiliation>
<nlm:affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Criscuolo, Francois" sort="Criscuolo, Francois" uniqKey="Criscuolo F" first="François" last="Criscuolo">François Criscuolo</name>
<affiliation>
<nlm:affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chery, Isabelle" sort="Chery, Isabelle" uniqKey="Chery I" first="Isabelle" last="Chery">Isabelle Chery</name>
<affiliation>
<nlm:affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blanc, Stephane" sort="Blanc, Stephane" uniqKey="Blanc S" first="Stéphane" last="Blanc">Stéphane Blanc</name>
<affiliation>
<nlm:affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turbill, Christopher" sort="Turbill, Christopher" uniqKey="Turbill C" first="Christopher" last="Turbill">Christopher Turbill</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Hawkesbury Campus, University of Western Sydney, Bourke Street, Richmond, 2753 NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruf, Thomas" sort="Ruf, Thomas" uniqKey="Ruf T" first="Thomas" last="Ruf">Thomas Ruf</name>
<affiliation>
<nlm:affiliation>Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25377448</idno>
<idno type="pmid">25377448</idno>
<idno type="doi">10.1098/rspb.2014.1131</idno>
<idno type="wicri:Area/PubMed/Corpus">003223</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003223</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes.</title>
<author>
<name sortKey="Giroud, Sylvain" sort="Giroud, Sylvain" uniqKey="Giroud S" first="Sylvain" last="Giroud">Sylvain Giroud</name>
<affiliation>
<nlm:affiliation>Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160 Vienna, Austria sylvain.giroud@vetmeduni.ac.at.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zahn, Sandrine" sort="Zahn, Sandrine" uniqKey="Zahn S" first="Sandrine" last="Zahn">Sandrine Zahn</name>
<affiliation>
<nlm:affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Criscuolo, Francois" sort="Criscuolo, Francois" uniqKey="Criscuolo F" first="François" last="Criscuolo">François Criscuolo</name>
<affiliation>
<nlm:affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chery, Isabelle" sort="Chery, Isabelle" uniqKey="Chery I" first="Isabelle" last="Chery">Isabelle Chery</name>
<affiliation>
<nlm:affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blanc, Stephane" sort="Blanc, Stephane" uniqKey="Blanc S" first="Stéphane" last="Blanc">Stéphane Blanc</name>
<affiliation>
<nlm:affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turbill, Christopher" sort="Turbill, Christopher" uniqKey="Turbill C" first="Christopher" last="Turbill">Christopher Turbill</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Hawkesbury Campus, University of Western Sydney, Bourke Street, Richmond, 2753 NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruf, Thomas" sort="Ruf, Thomas" uniqKey="Ruf T" first="Thomas" last="Ruf">Thomas Ruf</name>
<affiliation>
<nlm:affiliation>Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings. Biological sciences</title>
<idno type="eISSN">1471-2954</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (genetics)</term>
<term>Animals</term>
<term>Body Composition</term>
<term>Eating</term>
<term>Female</term>
<term>Food Deprivation</term>
<term>Hibernation</term>
<term>Male</term>
<term>Molecular Sequence Data</term>
<term>Myoxidae (growth & development)</term>
<term>Myoxidae (physiology)</term>
<term>Seasons</term>
<term>Telomere Homeostasis</term>
<term>Time Factors</term>
<term>Torpor</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Aging</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Myoxidae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Myoxidae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Body Composition</term>
<term>Eating</term>
<term>Female</term>
<term>Food Deprivation</term>
<term>Hibernation</term>
<term>Male</term>
<term>Molecular Sequence Data</term>
<term>Seasons</term>
<term>Telomere Homeostasis</term>
<term>Time Factors</term>
<term>Torpor</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Torpor is thought to slow age-related processes and to sustain growth and fattening of young individuals. Energy allocation into these processes represents a challenge for juveniles, especially for those born late in the season. We tested the hypothesis that late-born juvenile garden dormice (Eliomys quercinus) fed ad libitum ('AL', n = 9) or intermittently fasted ('IF', n = 9) use short torpor bouts to enhance growth and fat accumulation to survive winter. IF juveniles displayed more frequent and longer torpor bouts, compared with AL individuals before hibernation. Torpor frequency correlated negatively with energy expenditure and water turnover. Hence, IF juveniles gained mass at the same rate, reached similar pre-hibernation fattening and displayed identical hibernating patterns and mass losses as AL animals. We found no group differences in relative telomere length (RTL), an indicator of ageing, during the period of highest summer mass gain, despite greater torpor use by IF juveniles. Percentage change in RTL was negatively associated with mean and total euthermic durations among all individuals during hibernation. We conclude that torpor use promotes fattening in late-born juvenile dormice prior to hibernation. Furthermore, we provided the first evidence for a functional link between time spent in euthermy and ageing processes over winter.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25377448</PMID>
<DateCreated>
<Year>2014</Year>
<Month>11</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1471-2954</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>281</Volume>
<Issue>1797</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings. Biological sciences</Title>
<ISOAbbreviation>Proc. Biol. Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rspb.2014.1131</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">20141131</ELocationID>
<Abstract>
<AbstractText>Torpor is thought to slow age-related processes and to sustain growth and fattening of young individuals. Energy allocation into these processes represents a challenge for juveniles, especially for those born late in the season. We tested the hypothesis that late-born juvenile garden dormice (Eliomys quercinus) fed ad libitum ('AL', n = 9) or intermittently fasted ('IF', n = 9) use short torpor bouts to enhance growth and fat accumulation to survive winter. IF juveniles displayed more frequent and longer torpor bouts, compared with AL individuals before hibernation. Torpor frequency correlated negatively with energy expenditure and water turnover. Hence, IF juveniles gained mass at the same rate, reached similar pre-hibernation fattening and displayed identical hibernating patterns and mass losses as AL animals. We found no group differences in relative telomere length (RTL), an indicator of ageing, during the period of highest summer mass gain, despite greater torpor use by IF juveniles. Percentage change in RTL was negatively associated with mean and total euthermic durations among all individuals during hibernation. We conclude that torpor use promotes fattening in late-born juvenile dormice prior to hibernation. Furthermore, we provided the first evidence for a functional link between time spent in euthermy and ageing processes over winter.</AbstractText>
<CopyrightInformation>© 2014 The Author(s) Published by the Royal Society. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Giroud</LastName>
<ForeName>Sylvain</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160 Vienna, Austria sylvain.giroud@vetmeduni.ac.at.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zahn</LastName>
<ForeName>Sandrine</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Criscuolo</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chery</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blanc</LastName>
<ForeName>Stéphane</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Université de Strasbourg, IPHC, 23 rue Becquerel 67087 Strasbourg, France CNRS, UMR7178, 67087 Strasbourg, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Turbill</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Hawkesbury Campus, University of Western Sydney, Bourke Street, Richmond, 2753 NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruf</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AB253957</AccessionNumber>
<AccessionNumber>AB253958</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Proc Biol Sci</MedlineTA>
<NlmUniqueID>101245157</NlmUniqueID>
<ISSNLinking>0962-8452</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Gerontol. 2003 Sep;38(9):935-40</RefSource>
<PMID Version="1">12954479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2011 Nov 22;278(1723):3355-63</RefSource>
<PMID Version="1">21450735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oecologia. 2012 May;169(1):155-66</RefSource>
<PMID Version="1">22095523</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Med. 2006 Feb;56(1):17-22</RefSource>
<PMID Version="1">16521855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Nutr Soc. 1999 Feb;58(1):123-31</RefSource>
<PMID Version="1">10343349</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Comp Physiol. 1988;91(2):235-9</RefSource>
<PMID Version="1">2904339</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Biochem Zool. 2003 Mar-Apr;76(2):165-79</RefSource>
<PMID Version="1">12794670</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2010 Sep;1206:130-42</RefSource>
<PMID Version="1">20860686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Biochem Sci. 2002 Jul;27(7):339-44</RefSource>
<PMID Version="1">12114022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Mol Integr Physiol. 2008 Jun;150(2):176-80</RefSource>
<PMID Version="1">18499491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Nutr. 2005;25:469-97</RefSource>
<PMID Version="1">16011475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Biochem Zool. 2010 Jan-Feb;83(1):135-41</RefSource>
<PMID Version="1">19958172</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Biochem Zool. 2001 Mar-Apr;74(2):283-92</RefSource>
<PMID Version="1">11247747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol B. 2001 Feb;171(1):77-84</RefSource>
<PMID Version="1">11263729</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Comp Physiol. 1988;90(2):233-6</RefSource>
<PMID Version="1">2900117</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Lett. 2012 Apr 23;8(2):304-7</RefSource>
<PMID Version="1">21920955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1990 Aug;259(2 Pt 2):R385-92</RefSource>
<PMID Version="1">2386247</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 1997 Jul;77(3):731-58</RefSource>
<PMID Version="1">9234964</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2001 Aug;281(2):R572-83</RefSource>
<PMID Version="1">11448862</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol B. 2002 Apr;172(3):197-207</RefSource>
<PMID Version="1">11919701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 1992 Jan;58(1):359-64</RefSource>
<PMID Version="1">16348634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol B. 1992;162(8):696-706</RefSource>
<PMID Version="1">1494028</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2000 Mar;278(3):R698-704</RefSource>
<PMID Version="1">10712291</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Zool. 1993 Oct 1;267(2):104-12</RefSource>
<PMID Version="1">8409896</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 2003 Oct;83(4):1153-81</RefSource>
<PMID Version="1">14506303</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Lett. 2013 Apr 23;9(2):20121095</RefSource>
<PMID Version="1">23389666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2000 Dec;279(6):R1964-79</RefSource>
<PMID Version="1">11080059</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Clin Nutr. 2004 May;79(5):899S-906S</RefSource>
<PMID Version="1">15113737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol B. 2000 Nov;170(7):551-9</RefSource>
<PMID Version="1">11128446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Biochem Zool. 2003 Nov-Dec;76(6):858-67</RefSource>
<PMID Version="1">14988801</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2009 Oct;297(4):R950-9</RefSource>
<PMID Version="1">19625694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2002 May 15;30(10):e47</RefSource>
<PMID Version="1">12000852</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Behav. 2004 Jul;81(5):749-54</RefSource>
<PMID Version="1">15234180</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001823" MajorTopicYN="N">Body Composition</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004435" MajorTopicYN="N">Eating</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005508" MajorTopicYN="N">Food Deprivation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006605" MajorTopicYN="N">Hibernation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046330" MajorTopicYN="N">Myoxidae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059505" MajorTopicYN="N">Telomere Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064348" MajorTopicYN="Y">Torpor</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4240977</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Eliomys quercinus</Keyword>
<Keyword MajorTopicYN="N">doubly labelled water</Keyword>
<Keyword MajorTopicYN="N">intermittent fasting</Keyword>
<Keyword MajorTopicYN="N">pre-hibernation fattening</Keyword>
<Keyword MajorTopicYN="N">telomere length</Keyword>
<Keyword MajorTopicYN="N">winter survival</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25377448</ArticleId>
<ArticleId IdType="pii">rspb.2014.1131</ArticleId>
<ArticleId IdType="doi">10.1098/rspb.2014.1131</ArticleId>
<ArticleId IdType="pmc">PMC4240977</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003223 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003223 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25377448
   |texte=   Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25377448" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024