Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a.

Identifieur interne : 002E35 ( PubMed/Corpus ); précédent : 002E34; suivant : 002E36

Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a.

Auteurs : Tong Wang ; Sally Martin ; Andreas Papadopulos ; Callista B. Harper ; Timur A. Mavlyutov ; Dhevahi Niranjan ; Nick R. Glass ; Justin J. Cooper-White ; Jean-Baptiste Sibarita ; Daniel Choquet ; Bazbek Davletov ; Frédéric A. Meunier

Source :

RBID : pubmed:25878289

English descriptors

Abstract

Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity.

DOI: 10.1523/JNEUROSCI.3757-14.2015
PubMed: 25878289

Links to Exploration step

pubmed:25878289

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a.</title>
<author>
<name sortKey="Wang, Tong" sort="Wang, Tong" uniqKey="Wang T" first="Tong" last="Wang">Tong Wang</name>
<affiliation>
<nlm:affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin, Sally" sort="Martin, Sally" uniqKey="Martin S" first="Sally" last="Martin">Sally Martin</name>
<affiliation>
<nlm:affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Papadopulos, Andreas" sort="Papadopulos, Andreas" uniqKey="Papadopulos A" first="Andreas" last="Papadopulos">Andreas Papadopulos</name>
<affiliation>
<nlm:affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harper, Callista B" sort="Harper, Callista B" uniqKey="Harper C" first="Callista B" last="Harper">Callista B. Harper</name>
<affiliation>
<nlm:affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mavlyutov, Timur A" sort="Mavlyutov, Timur A" uniqKey="Mavlyutov T" first="Timur A" last="Mavlyutov">Timur A. Mavlyutov</name>
<affiliation>
<nlm:affiliation>University of Wisconsin Medical School, Madison, Wisconsin 53706.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Niranjan, Dhevahi" sort="Niranjan, Dhevahi" uniqKey="Niranjan D" first="Dhevahi" last="Niranjan">Dhevahi Niranjan</name>
<affiliation>
<nlm:affiliation>Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Glass, Nick R" sort="Glass, Nick R" uniqKey="Glass N" first="Nick R" last="Glass">Nick R. Glass</name>
<affiliation>
<nlm:affiliation>Australian Institute for Bioengineering and Nanotechnology, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cooper White, Justin J" sort="Cooper White, Justin J" uniqKey="Cooper White J" first="Justin J" last="Cooper-White">Justin J. Cooper-White</name>
<affiliation>
<nlm:affiliation>Australian Institute for Bioengineering and Nanotechnology, and School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia, Materials Science and Engineering Division, Commonwealth Scientific and Industrial Research Organization, Clayton, Victoria 3169, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sibarita, Jean Baptiste" sort="Sibarita, Jean Baptiste" uniqKey="Sibarita J" first="Jean-Baptiste" last="Sibarita">Jean-Baptiste Sibarita</name>
<affiliation>
<nlm:affiliation>University of Bordeaux, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Choquet, Daniel" sort="Choquet, Daniel" uniqKey="Choquet D" first="Daniel" last="Choquet">Daniel Choquet</name>
<affiliation>
<nlm:affiliation>University of Bordeaux, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France, Bordeaux Imaging Center, Unité Mixte de Service 3420, Centre National de la Recherche Scientifique, US4 INSERM, University of Bordeaux, France, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davletov, Bazbek" sort="Davletov, Bazbek" uniqKey="Davletov B" first="Bazbek" last="Davletov">Bazbek Davletov</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meunier, Frederic A" sort="Meunier, Frederic A" uniqKey="Meunier F" first="Frédéric A" last="Meunier">Frédéric A. Meunier</name>
<affiliation>
<nlm:affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, f.meunier@uq.edu.au.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25878289</idno>
<idno type="pmid">25878289</idno>
<idno type="doi">10.1523/JNEUROSCI.3757-14.2015</idno>
<idno type="wicri:Area/PubMed/Corpus">002E35</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002E35</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a.</title>
<author>
<name sortKey="Wang, Tong" sort="Wang, Tong" uniqKey="Wang T" first="Tong" last="Wang">Tong Wang</name>
<affiliation>
<nlm:affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin, Sally" sort="Martin, Sally" uniqKey="Martin S" first="Sally" last="Martin">Sally Martin</name>
<affiliation>
<nlm:affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Papadopulos, Andreas" sort="Papadopulos, Andreas" uniqKey="Papadopulos A" first="Andreas" last="Papadopulos">Andreas Papadopulos</name>
<affiliation>
<nlm:affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harper, Callista B" sort="Harper, Callista B" uniqKey="Harper C" first="Callista B" last="Harper">Callista B. Harper</name>
<affiliation>
<nlm:affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mavlyutov, Timur A" sort="Mavlyutov, Timur A" uniqKey="Mavlyutov T" first="Timur A" last="Mavlyutov">Timur A. Mavlyutov</name>
<affiliation>
<nlm:affiliation>University of Wisconsin Medical School, Madison, Wisconsin 53706.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Niranjan, Dhevahi" sort="Niranjan, Dhevahi" uniqKey="Niranjan D" first="Dhevahi" last="Niranjan">Dhevahi Niranjan</name>
<affiliation>
<nlm:affiliation>Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Glass, Nick R" sort="Glass, Nick R" uniqKey="Glass N" first="Nick R" last="Glass">Nick R. Glass</name>
<affiliation>
<nlm:affiliation>Australian Institute for Bioengineering and Nanotechnology, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cooper White, Justin J" sort="Cooper White, Justin J" uniqKey="Cooper White J" first="Justin J" last="Cooper-White">Justin J. Cooper-White</name>
<affiliation>
<nlm:affiliation>Australian Institute for Bioengineering and Nanotechnology, and School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia, Materials Science and Engineering Division, Commonwealth Scientific and Industrial Research Organization, Clayton, Victoria 3169, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sibarita, Jean Baptiste" sort="Sibarita, Jean Baptiste" uniqKey="Sibarita J" first="Jean-Baptiste" last="Sibarita">Jean-Baptiste Sibarita</name>
<affiliation>
<nlm:affiliation>University of Bordeaux, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Choquet, Daniel" sort="Choquet, Daniel" uniqKey="Choquet D" first="Daniel" last="Choquet">Daniel Choquet</name>
<affiliation>
<nlm:affiliation>University of Bordeaux, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France, Bordeaux Imaging Center, Unité Mixte de Service 3420, Centre National de la Recherche Scientifique, US4 INSERM, University of Bordeaux, France, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davletov, Bazbek" sort="Davletov, Bazbek" uniqKey="Davletov B" first="Bazbek" last="Davletov">Bazbek Davletov</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meunier, Frederic A" sort="Meunier, Frederic A" uniqKey="Meunier F" first="Frédéric A" last="Meunier">Frédéric A. Meunier</name>
<affiliation>
<nlm:affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, f.meunier@uq.edu.au.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of neuroscience : the official journal of the Society for Neuroscience</title>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Androstadienes (pharmacology)</term>
<term>Animals</term>
<term>Animals, Newborn</term>
<term>Autophagy (drug effects)</term>
<term>Autophagy (physiology)</term>
<term>Axonal Transport (drug effects)</term>
<term>Axonal Transport (physiology)</term>
<term>Botulinum Toxins, Type A (metabolism)</term>
<term>Botulinum Toxins, Type A (pharmacology)</term>
<term>Cells, Cultured</term>
<term>Enzyme Inhibitors (pharmacology)</term>
<term>Female</term>
<term>Hippocampus (cytology)</term>
<term>In Vitro Techniques</term>
<term>Macrolides (pharmacology)</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Microtubule-Associated Proteins (metabolism)</term>
<term>Neurons (cytology)</term>
<term>Neurons (drug effects)</term>
<term>Neurons (ultrastructure)</term>
<term>Neurotoxins (metabolism)</term>
<term>Neurotoxins (pharmacology)</term>
<term>Organ Culture Techniques</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Receptors, Nerve Growth Factor (metabolism)</term>
<term>Synaptosomal-Associated Protein 25 (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Botulinum Toxins, Type A</term>
<term>Microtubule-Associated Proteins</term>
<term>Neurotoxins</term>
<term>Receptors, Nerve Growth Factor</term>
<term>Synaptosomal-Associated Protein 25</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Androstadienes</term>
<term>Botulinum Toxins, Type A</term>
<term>Enzyme Inhibitors</term>
<term>Macrolides</term>
<term>Neurotoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Hippocampus</term>
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
<term>Axonal Transport</term>
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Autophagy</term>
<term>Axonal Transport</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Newborn</term>
<term>Cells, Cultured</term>
<term>Female</term>
<term>In Vitro Techniques</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Organ Culture Techniques</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25878289</PMID>
<DateCreated>
<Year>2015</Year>
<Month>04</Month>
<Day>16</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>06</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1529-2401</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>35</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of neuroscience : the official journal of the Society for Neuroscience</Title>
<ISOAbbreviation>J. Neurosci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a.</ArticleTitle>
<Pagination>
<MedlinePgn>6179-94</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1523/JNEUROSCI.3757-14.2015</ELocationID>
<Abstract>
<AbstractText>Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity.</AbstractText>
<CopyrightInformation>Copyright © 2015 the authors 0270-6474/15/356179-16$15.00/0.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Tong</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>Sally</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-9294-5404</Identifier>
<AffiliationInfo>
<Affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Papadopulos</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harper</LastName>
<ForeName>Callista B</ForeName>
<Initials>CB</Initials>
<AffiliationInfo>
<Affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mavlyutov</LastName>
<ForeName>Timur A</ForeName>
<Initials>TA</Initials>
<AffiliationInfo>
<Affiliation>University of Wisconsin Medical School, Madison, Wisconsin 53706.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niranjan</LastName>
<ForeName>Dhevahi</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Glass</LastName>
<ForeName>Nick R</ForeName>
<Initials>NR</Initials>
<AffiliationInfo>
<Affiliation>Australian Institute for Bioengineering and Nanotechnology, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cooper-White</LastName>
<ForeName>Justin J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Australian Institute for Bioengineering and Nanotechnology, and School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia, Materials Science and Engineering Division, Commonwealth Scientific and Industrial Research Organization, Clayton, Victoria 3169, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sibarita</LastName>
<ForeName>Jean-Baptiste</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>University of Bordeaux, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choquet</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>University of Bordeaux, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France, Bordeaux Imaging Center, Unité Mixte de Service 3420, Centre National de la Recherche Scientifique, US4 INSERM, University of Bordeaux, France, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davletov</LastName>
<ForeName>Bazbek</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meunier</LastName>
<ForeName>Frédéric A</ForeName>
<Initials>FA</Initials>
<AffiliationInfo>
<Affiliation>Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, f.meunier@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MC_U105178791</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>MR/K022539/1</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosci</MedlineTA>
<NlmUniqueID>8102140</NlmUniqueID>
<ISSNLinking>0270-6474</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000730">Androstadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C480860">MAP1LC3 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018942">Macrolides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009498">Neurotoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017475">Receptors, Nerve Growth Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050825">Synaptosomal-Associated Protein 25</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C517634">TNFRSF16 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>88899-55-2</RegistryNumber>
<NameOfSubstance UI="C040929">bafilomycin A1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.69</RegistryNumber>
<NameOfSubstance UI="D019274">Botulinum Toxins, Type A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>XVA4O219QW</RegistryNumber>
<NameOfSubstance UI="C009687">wortmannin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 1997 Jan 15;243(1-2):240-6</RefSource>
<PMID Version="1">9030745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiology. 1997 Oct;143 ( Pt 10):3337-47</RefSource>
<PMID Version="1">9353935</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Struct Funct. 1998 Feb;23(1):33-42</RefSource>
<PMID Version="1">9639028</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2006 Apr 3;580(8):2011-4</RefSource>
<PMID Version="1">16545378</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2006 Apr 28;312(5773):592-6</RefSource>
<PMID Version="1">16543415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Aug 2;26(31):8057-68</RefSource>
<PMID Version="1">16885219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Traffic. 2007 Feb;8(2):142-53</RefSource>
<PMID Version="1">17241445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Autophagy. 2007 Sep-Oct;3(5):452-60</RefSource>
<PMID Version="1">17534139</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2007 Oct;9(10):1102-9</RefSource>
<PMID Version="1">17909521</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Apr 2;28(14):3689-96</RefSource>
<PMID Version="1">18385327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2008;445:77-88</RefSource>
<PMID Version="1">18425443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2008 Dec;19(12):5593-603</RefSource>
<PMID Version="1">18843041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Death Differ. 2009 Jan;16(1):70-8</RefSource>
<PMID Version="1">19008921</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2014 Jan 2;505(7481):108-11</RefSource>
<PMID Version="1">24240280</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Autophagy. 2010 Apr;6(3):378-85</RefSource>
<PMID Version="1">20150763</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 May 25;31(21):7817-30</RefSource>
<PMID Version="1">21613495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biochem. 2011;80:125-56</RefSource>
<PMID Version="1">21548784</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2011 Sep 13;21(3):431-44</RefSource>
<PMID Version="1">21856246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2011;2:491</RefSource>
<PMID Version="1">21971506</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2011 Oct 14;286(41):35966-76</RefSource>
<PMID Version="1">21832053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Nov 2;31(44):15650-9</RefSource>
<PMID Version="1">22049408</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2012 Feb 20;196(4):407-17</RefSource>
<PMID Version="1">22331844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Jul 25;32(30):10413-22</RefSource>
<PMID Version="1">22836274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Autophagy. 2012 May 1;8(5):858-60</RefSource>
<PMID Version="1">22617438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2012 Dec;8(12):e1003087</RefSource>
<PMID Version="1">23300443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(3):e60152</RefSource>
<PMID Version="1">23544129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2013 Apr 19;288(16):11144-54</RefSource>
<PMID Version="1">23471969</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(4):e62918</RefSource>
<PMID Version="1">23646160</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2013 Jul;36(7):418-28</RefSource>
<PMID Version="1">23639383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Neurobiol. 2013 Aug;48(1):120-7</RefSource>
<PMID Version="1">23471747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2013 Aug;19(8):983-97</RefSource>
<PMID Version="1">23921753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2013 Aug 7;33(32):13204-24</RefSource>
<PMID Version="1">23926273</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2013 Dec 4;33(49):19143-53</RefSource>
<PMID Version="1">24305811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1998 Aug 21;273(34):21883-92</RefSource>
<PMID Version="1">9705327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 1999 Apr;76(4):2262-71</RefSource>
<PMID Version="1">10096921</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1381):259-68</RefSource>
<PMID Version="1">10212474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurocytol. 1998 Aug;27(8):559-73</RefSource>
<PMID Version="1">10405023</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO Rep. 2004 Nov;5(11):1090-5</RefSource>
<PMID Version="1">15486565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Soc Symp. 2005;(72):139-50</RefSource>
<PMID Version="1">15649138</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2005 May 9;169(3):425-34</RefSource>
<PMID Version="1">15866887</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2005 Aug;6(8):615-25</RefSource>
<PMID Version="1">16062170</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2005 Aug;2(8):599-605</RefSource>
<PMID Version="1">16094385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2005 Oct;16(10):4841-51</RefSource>
<PMID Version="1">16055506</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014;9(1):e87242</RefSource>
<PMID Version="1">24489879</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2014 Aug;12(8):535-49</RefSource>
<PMID Version="1">24975322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2014 Aug;10(8):e1004348</RefSource>
<PMID Version="1">25165859</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Rep. 2014 Sep 25;8(6):1870-8</RefSource>
<PMID Version="1">25220457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Microbiol. 2009 Feb;11(2):289-308</RefSource>
<PMID Version="1">19016790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2009 Apr;109(1):15-24</RefSource>
<PMID Version="1">19154335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2009 Jun 23;48(24):5631-41</RefSource>
<PMID Version="1">19476346</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 2000 Apr;80(2):717-66</RefSource>
<PMID Version="1">10747206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2000 Nov 1;19(21):5720-8</RefSource>
<PMID Version="1">11060023</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2001 Feb 19;152(4):657-68</RefSource>
<PMID Version="1">11266458</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol Paris. 2002 Jan-Mar;96(1-2):105-13</RefSource>
<PMID Version="1">11755789</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2002 Jan 21;156(2):233-9</RefSource>
<PMID Version="1">11807088</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Biol. 2003 Jan;10(1):13-8</RefSource>
<PMID Version="1">12459720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Apr 15;23(8):3209-20</RefSource>
<PMID Version="1">12716928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Neurosci. 2003 Apr;22(4):454-66</RefSource>
<PMID Version="1">12727443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Mol Med. 2003 Jul;9(7):291-9</RefSource>
<PMID Version="1">12900216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurobiol. 2004 Feb 5;58(2):295-314</RefSource>
<PMID Version="1">14704960</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Apr 21;24(16):3907-16</RefSource>
<PMID Version="1">15102906</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1984 Feb 2-8;307(5950):457-60</RefSource>
<PMID Version="1">6694738</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1990 Jun 5;265(16):9153-8</RefSource>
<PMID Version="1">2160960</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1992 Oct;119(1):123-37</RefSource>
<PMID Version="1">1527164</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1993 Sep 9;365(6442):160-3</RefSource>
<PMID Version="1">8103915</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 1993 Nov 29;335(1):99-103</RefSource>
<PMID Version="1">8243676</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Histochemistry. 1994 Nov;102(5):329-35</RefSource>
<PMID Version="1">7868367</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000730" MajorTopicYN="N">Androstadienes</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000831" MajorTopicYN="N">Animals, Newborn</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001370" MajorTopicYN="N">Axonal Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019274" MajorTopicYN="N">Botulinum Toxins, Type A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006624" MajorTopicYN="N">Hippocampus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018942" MajorTopicYN="N">Macrolides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009498" MajorTopicYN="N">Neurotoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009924" MajorTopicYN="N">Organ Culture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017207" MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017475" MajorTopicYN="N">Receptors, Nerve Growth Factor</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050825" MajorTopicYN="N">Synaptosomal-Associated Protein 25</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">EMS65975</OtherID>
<OtherID Source="NLM">PMC4787026</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Botulinum neurotoxin</Keyword>
<Keyword MajorTopicYN="N">autophagosome</Keyword>
<Keyword MajorTopicYN="N">axon</Keyword>
<Keyword MajorTopicYN="N">presynaptic</Keyword>
<Keyword MajorTopicYN="N">retrograde transport</Keyword>
<Keyword MajorTopicYN="N">synaptic vesicle</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25878289</ArticleId>
<ArticleId IdType="pii">35/15/6179</ArticleId>
<ArticleId IdType="doi">10.1523/JNEUROSCI.3757-14.2015</ArticleId>
<ArticleId IdType="pmc">PMC4787026</ArticleId>
<ArticleId IdType="mid">EMS65975</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E35 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002E35 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25878289
   |texte=   Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25878289" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024