Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails.

Identifieur interne : 002B43 ( PubMed/Corpus ); précédent : 002B42; suivant : 002B44

δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails.

Auteurs : Ai-Hua Jin ; Mathilde R. Israel ; Marco C. Inserra ; Jennifer J. Smith ; Richard J. Lewis ; Paul F. Alewood ; Irina Vetter ; Sébastien Dutertre

Source :

RBID : pubmed:26156767

English descriptors

Abstract

Some venomous cone snails feed on small fishes using an immobilizing combination of synergistic venom peptides that target Kv and Nav channels. As part of this envenomation strategy, δ-conotoxins are potent ichtyotoxins that enhance Nav channel function. δ-Conotoxins belong to an ancient and widely distributed gene superfamily, but any evolutionary link from ancestral worm-eating cone snails to modern piscivorous species has not been elucidated. Here, we report the discovery of SuVIA, a potent vertebrate-active δ-conotoxin characterized from a vermivorous cone snail (Conus suturatus). SuVIA is equipotent at hNaV1.3, hNaV1.4 and hNaV1.6 with EC50s in the low nanomolar range. SuVIA also increased peak hNaV1.7 current by approximately 75% and shifted the voltage-dependence of activation to more hyperpolarized potentials from -15 mV to -25 mV, with little effect on the voltage-dependence of inactivation. Interestingly, the proximal venom gland expression and pain-inducing effect of SuVIA in mammals suggest that δ-conotoxins in vermivorous cone snails play a defensive role against higher order vertebrates. We propose that δ-conotoxins originally evolved in ancestral vermivorous cones to defend against larger predators including fishes have been repurposed to facilitate a shift to piscivorous behaviour, suggesting an unexpected underlying mechanism for this remarkable evolutionary transition.

DOI: 10.1098/rspb.2015.0817
PubMed: 26156767

Links to Exploration step

pubmed:26156767

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails.</title>
<author>
<name sortKey="Jin, Ai Hua" sort="Jin, Ai Hua" uniqKey="Jin A" first="Ai-Hua" last="Jin">Ai-Hua Jin</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Israel, Mathilde R" sort="Israel, Mathilde R" uniqKey="Israel M" first="Mathilde R" last="Israel">Mathilde R. Israel</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Inserra, Marco C" sort="Inserra, Marco C" uniqKey="Inserra M" first="Marco C" last="Inserra">Marco C. Inserra</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, Jennifer J" sort="Smith, Jennifer J" uniqKey="Smith J" first="Jennifer J" last="Smith">Jennifer J. Smith</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Richard J" sort="Lewis, Richard J" uniqKey="Lewis R" first="Richard J" last="Lewis">Richard J. Lewis</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alewood, Paul F" sort="Alewood, Paul F" uniqKey="Alewood P" first="Paul F" last="Alewood">Paul F. Alewood</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vetter, Irina" sort="Vetter, Irina" uniqKey="Vetter I" first="Irina" last="Vetter">Irina Vetter</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia i.vetter@uq.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dutertre, Sebastien" sort="Dutertre, Sebastien" uniqKey="Dutertre S" first="Sébastien" last="Dutertre">Sébastien Dutertre</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, Montpellier Cedex 5 34095, France sebastien.dutertre@univ-montp2.fr.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26156767</idno>
<idno type="pmid">26156767</idno>
<idno type="doi">10.1098/rspb.2015.0817</idno>
<idno type="wicri:Area/PubMed/Corpus">002B43</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002B43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails.</title>
<author>
<name sortKey="Jin, Ai Hua" sort="Jin, Ai Hua" uniqKey="Jin A" first="Ai-Hua" last="Jin">Ai-Hua Jin</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Israel, Mathilde R" sort="Israel, Mathilde R" uniqKey="Israel M" first="Mathilde R" last="Israel">Mathilde R. Israel</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Inserra, Marco C" sort="Inserra, Marco C" uniqKey="Inserra M" first="Marco C" last="Inserra">Marco C. Inserra</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, Jennifer J" sort="Smith, Jennifer J" uniqKey="Smith J" first="Jennifer J" last="Smith">Jennifer J. Smith</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Richard J" sort="Lewis, Richard J" uniqKey="Lewis R" first="Richard J" last="Lewis">Richard J. Lewis</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alewood, Paul F" sort="Alewood, Paul F" uniqKey="Alewood P" first="Paul F" last="Alewood">Paul F. Alewood</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vetter, Irina" sort="Vetter, Irina" uniqKey="Vetter I" first="Irina" last="Vetter">Irina Vetter</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia i.vetter@uq.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dutertre, Sebastien" sort="Dutertre, Sebastien" uniqKey="Dutertre S" first="Sébastien" last="Dutertre">Sébastien Dutertre</name>
<affiliation>
<nlm:affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, Montpellier Cedex 5 34095, France sebastien.dutertre@univ-montp2.fr.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings. Biological sciences</title>
<idno type="eISSN">1471-2954</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Biological Evolution</term>
<term>Conotoxins (genetics)</term>
<term>Conotoxins (metabolism)</term>
<term>Conotoxins (pharmacology)</term>
<term>Conus Snail (genetics)</term>
<term>Conus Snail (physiology)</term>
<term>Male</term>
<term>Mice (physiology)</term>
<term>Mice, Inbred C57BL</term>
<term>Pain</term>
<term>Predatory Behavior</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Conotoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Conotoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Conotoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Conus Snail</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Conus Snail</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Biological Evolution</term>
<term>Male</term>
<term>Mice, Inbred C57BL</term>
<term>Pain</term>
<term>Predatory Behavior</term>
<term>Sequence Alignment</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Some venomous cone snails feed on small fishes using an immobilizing combination of synergistic venom peptides that target Kv and Nav channels. As part of this envenomation strategy, δ-conotoxins are potent ichtyotoxins that enhance Nav channel function. δ-Conotoxins belong to an ancient and widely distributed gene superfamily, but any evolutionary link from ancestral worm-eating cone snails to modern piscivorous species has not been elucidated. Here, we report the discovery of SuVIA, a potent vertebrate-active δ-conotoxin characterized from a vermivorous cone snail (Conus suturatus). SuVIA is equipotent at hNaV1.3, hNaV1.4 and hNaV1.6 with EC50s in the low nanomolar range. SuVIA also increased peak hNaV1.7 current by approximately 75% and shifted the voltage-dependence of activation to more hyperpolarized potentials from -15 mV to -25 mV, with little effect on the voltage-dependence of inactivation. Interestingly, the proximal venom gland expression and pain-inducing effect of SuVIA in mammals suggest that δ-conotoxins in vermivorous cone snails play a defensive role against higher order vertebrates. We propose that δ-conotoxins originally evolved in ancestral vermivorous cones to defend against larger predators including fishes have been repurposed to facilitate a shift to piscivorous behaviour, suggesting an unexpected underlying mechanism for this remarkable evolutionary transition.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26156767</PMID>
<DateCreated>
<Year>2015</Year>
<Month>07</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1471-2954</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>282</Volume>
<Issue>1811</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings. Biological sciences</Title>
<ISOAbbreviation>Proc. Biol. Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rspb.2015.0817</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">20150817</ELocationID>
<Abstract>
<AbstractText>Some venomous cone snails feed on small fishes using an immobilizing combination of synergistic venom peptides that target Kv and Nav channels. As part of this envenomation strategy, δ-conotoxins are potent ichtyotoxins that enhance Nav channel function. δ-Conotoxins belong to an ancient and widely distributed gene superfamily, but any evolutionary link from ancestral worm-eating cone snails to modern piscivorous species has not been elucidated. Here, we report the discovery of SuVIA, a potent vertebrate-active δ-conotoxin characterized from a vermivorous cone snail (Conus suturatus). SuVIA is equipotent at hNaV1.3, hNaV1.4 and hNaV1.6 with EC50s in the low nanomolar range. SuVIA also increased peak hNaV1.7 current by approximately 75% and shifted the voltage-dependence of activation to more hyperpolarized potentials from -15 mV to -25 mV, with little effect on the voltage-dependence of inactivation. Interestingly, the proximal venom gland expression and pain-inducing effect of SuVIA in mammals suggest that δ-conotoxins in vermivorous cone snails play a defensive role against higher order vertebrates. We propose that δ-conotoxins originally evolved in ancestral vermivorous cones to defend against larger predators including fishes have been repurposed to facilitate a shift to piscivorous behaviour, suggesting an unexpected underlying mechanism for this remarkable evolutionary transition.</AbstractText>
<CopyrightInformation>© 2015 The Author(s) Published by the Royal Society. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Ai-Hua</ForeName>
<Initials>AH</Initials>
<AffiliationInfo>
<Affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Israel</LastName>
<ForeName>Mathilde R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Inserra</LastName>
<ForeName>Marco C</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Jennifer J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lewis</LastName>
<ForeName>Richard J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alewood</LastName>
<ForeName>Paul F</ForeName>
<Initials>PF</Initials>
<AffiliationInfo>
<Affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vetter</LastName>
<ForeName>Irina</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia i.vetter@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dutertre</LastName>
<ForeName>Sébastien</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, Montpellier Cedex 5 34095, France sebastien.dutertre@univ-montp2.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Proc Biol Sci</MedlineTA>
<NlmUniqueID>101245157</NlmUniqueID>
<ISSNLinking>0962-8452</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020916">Conotoxins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2001 Nov 6;40(44):13201-8</RefSource>
<PMID Version="1">11683628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Gen Physiol. 2002 Jan;119(1):45-54</RefSource>
<PMID Version="1">11773237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1996 May 9;381(6578):148-51</RefSource>
<PMID Version="1">12074021</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2003 Mar 7;278(10):8717-24</RefSource>
<PMID Version="1">12471026</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurobiol. 2003 Jun;55(3):355-71</RefSource>
<PMID Version="1">12717704</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2004 Jun 7;271(1544):1165-74</RefSource>
<PMID Version="1">15306367</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 2004 Oct 1;333(1):174-81</RefSource>
<PMID Version="1">15351294</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1988 Nov 25;16(22):10881-90</RefSource>
<PMID Version="1">2849754</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1994 Sep 27;33(38):11420-5</RefSource>
<PMID Version="1">7918355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2005 Jul 18;579(18):3881-4</RefSource>
<PMID Version="1">15990094</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Dec 14;444(7121):894-8</RefSource>
<PMID Version="1">17167479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pain. 2013 Sep;154(9):1749-57</RefSource>
<PMID Version="1">23711479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Pharmacol. 2008 Jun 15;75(12):2334-44</RefSource>
<PMID Version="1">18486102</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Pharmacol. 2012 Aug 15;84(4):540-8</RefSource>
<PMID Version="1">22609441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Jun 26;109 Suppl 1:10619-25</RefSource>
<PMID Version="1">22723361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Pharmacol. 2012 Jun 1;83(11):1562-71</RefSource>
<PMID Version="1">22410003</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pharmacol Rev. 2012 Apr;64(2):259-98</RefSource>
<PMID Version="1">22407615</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2010 Jan;1184:196-207</RefSource>
<PMID Version="1">20146699</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Toxicol. 2009 Oct;83(10):925-32</RefSource>
<PMID Version="1">19562324</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Peptides. 2009 Jul;30(7):1222-7</RefSource>
<PMID Version="1">19540420</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2009 May 1;25(9):1189-91</RefSource>
<PMID Version="1">19151095</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Evol. 2008 Sep;67(3):315-21</RefSource>
<PMID Version="1">18696024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Channels (Austin). 2007 Jul-Aug;1(4):253-62</RefSource>
<PMID Version="1">18698149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2013 Feb;12(2):312-29</RefSource>
<PMID Version="1">23152539</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5087-92</RefSource>
<PMID Version="1">25848010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Phylogenet Evol. 2014 Sep;78:290-303</RefSource>
<PMID Version="1">24878223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2014;5:3521</RefSource>
<PMID Version="1">24662800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Chem Biol. 2013;8(6):1215-22</RefSource>
<PMID Version="1">23527544</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2013;14:708</RefSource>
<PMID Version="1">24131469</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020916" MajorTopicYN="N">Conotoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052078" MajorTopicYN="N">Conus Snail</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010146" MajorTopicYN="Y">Pain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011235" MajorTopicYN="Y">Predatory Behavior</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4528551</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">conotoxin</Keyword>
<Keyword MajorTopicYN="N">defence</Keyword>
<Keyword MajorTopicYN="N">molecular evolution</Keyword>
<Keyword MajorTopicYN="N">predation</Keyword>
<Keyword MajorTopicYN="N">venom</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26156767</ArticleId>
<ArticleId IdType="pii">rspb.2015.0817</ArticleId>
<ArticleId IdType="doi">10.1098/rspb.2015.0817</ArticleId>
<ArticleId IdType="pmc">PMC4528551</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002B43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26156767
   |texte=   δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26156767" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024