Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan.

Identifieur interne : 002743 ( PubMed/Corpus ); précédent : 002742; suivant : 002744

Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan.

Auteurs : M E Torres ; T. Cox ; W-L Hong ; J. Mcmanus ; J C Sample ; C. Destrigneville ; H M Gan ; H Y Gan ; J W Moreau

Source :

RBID : pubmed:26081483

English descriptors

Abstract

We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca(2+) and Cl(1-) are largely supplied via diffusion from a high-salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm(-3) day(-1) at ~400 mbsf. We also note the disappearance of δ-Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g(-1)) and manganese (up to 20 μmol g(-1)). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate-reducing pathways. The detection of the manganese- and iron-reducer γ-Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.

DOI: 10.1111/gbi.12146
PubMed: 26081483

Links to Exploration step

pubmed:26081483

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan.</title>
<author>
<name sortKey="Torres, M E" sort="Torres, M E" uniqKey="Torres M" first="M E" last="Torres">M E Torres</name>
<affiliation>
<nlm:affiliation>CEOAS, Oregon State University, Corvallis, OR, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cox, T" sort="Cox, T" uniqKey="Cox T" first="T" last="Cox">T. Cox</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences, University of Melbourne, Parkville, Vic., Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hong, W L" sort="Hong, W L" uniqKey="Hong W" first="W-L" last="Hong">W-L Hong</name>
<affiliation>
<nlm:affiliation>CEOAS, Oregon State University, Corvallis, OR, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mcmanus, J" sort="Mcmanus, J" uniqKey="Mcmanus J" first="J" last="Mcmanus">J. Mcmanus</name>
<affiliation>
<nlm:affiliation>CEOAS, Oregon State University, Corvallis, OR, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sample, J C" sort="Sample, J C" uniqKey="Sample J" first="J C" last="Sample">J C Sample</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences & Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Destrigneville, C" sort="Destrigneville, C" uniqKey="Destrigneville C" first="C" last="Destrigneville">C. Destrigneville</name>
<affiliation>
<nlm:affiliation>Université de Toulouse, UPS-OMP-LMTG, Toulouse, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gan, H M" sort="Gan, H M" uniqKey="Gan H" first="H M" last="Gan">H M Gan</name>
<affiliation>
<nlm:affiliation>School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, Malaysia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gan, H Y" sort="Gan, H Y" uniqKey="Gan H" first="H Y" last="Gan">H Y Gan</name>
<affiliation>
<nlm:affiliation>School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, Malaysia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moreau, J W" sort="Moreau, J W" uniqKey="Moreau J" first="J W" last="Moreau">J W Moreau</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences, University of Melbourne, Parkville, Vic., Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26081483</idno>
<idno type="pmid">26081483</idno>
<idno type="doi">10.1111/gbi.12146</idno>
<idno type="wicri:Area/PubMed/Corpus">002743</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002743</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan.</title>
<author>
<name sortKey="Torres, M E" sort="Torres, M E" uniqKey="Torres M" first="M E" last="Torres">M E Torres</name>
<affiliation>
<nlm:affiliation>CEOAS, Oregon State University, Corvallis, OR, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cox, T" sort="Cox, T" uniqKey="Cox T" first="T" last="Cox">T. Cox</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences, University of Melbourne, Parkville, Vic., Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hong, W L" sort="Hong, W L" uniqKey="Hong W" first="W-L" last="Hong">W-L Hong</name>
<affiliation>
<nlm:affiliation>CEOAS, Oregon State University, Corvallis, OR, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mcmanus, J" sort="Mcmanus, J" uniqKey="Mcmanus J" first="J" last="Mcmanus">J. Mcmanus</name>
<affiliation>
<nlm:affiliation>CEOAS, Oregon State University, Corvallis, OR, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sample, J C" sort="Sample, J C" uniqKey="Sample J" first="J C" last="Sample">J C Sample</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences & Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Destrigneville, C" sort="Destrigneville, C" uniqKey="Destrigneville C" first="C" last="Destrigneville">C. Destrigneville</name>
<affiliation>
<nlm:affiliation>Université de Toulouse, UPS-OMP-LMTG, Toulouse, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gan, H M" sort="Gan, H M" uniqKey="Gan H" first="H M" last="Gan">H M Gan</name>
<affiliation>
<nlm:affiliation>School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, Malaysia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gan, H Y" sort="Gan, H Y" uniqKey="Gan H" first="H Y" last="Gan">H Y Gan</name>
<affiliation>
<nlm:affiliation>School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, Malaysia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moreau, J W" sort="Moreau, J W" uniqKey="Moreau J" first="J W" last="Moreau">J W Moreau</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences, University of Melbourne, Parkville, Vic., Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Geobiology</title>
<idno type="eISSN">1472-4669</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Archaea (classification)</term>
<term>Archaea (genetics)</term>
<term>Archaea (isolation & purification)</term>
<term>Bacteria (classification)</term>
<term>Bacteria (genetics)</term>
<term>Bacteria (isolation & purification)</term>
<term>Biodiversity</term>
<term>DNA, Archaeal (genetics)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Environment</term>
<term>Geologic Sediments (microbiology)</term>
<term>Pacific Ocean</term>
<term>Polymerase Chain Reaction</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Archaeal</term>
<term>DNA, Bacterial</term>
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Pacific Ocean</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Geologic Sediments</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Environment</term>
<term>Polymerase Chain Reaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca(2+) and Cl(1-) are largely supplied via diffusion from a high-salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm(-3) day(-1) at ~400 mbsf. We also note the disappearance of δ-Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g(-1)) and manganese (up to 20 μmol g(-1)). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate-reducing pathways. The detection of the manganese- and iron-reducer γ-Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26081483</PMID>
<DateCreated>
<Year>2015</Year>
<Month>10</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>10</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1472-4669</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Geobiology</Title>
<ISOAbbreviation>Geobiology</ISOAbbreviation>
</Journal>
<ArticleTitle>Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan.</ArticleTitle>
<Pagination>
<MedlinePgn>562-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/gbi.12146</ELocationID>
<Abstract>
<AbstractText>We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca(2+) and Cl(1-) are largely supplied via diffusion from a high-salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm(-3) day(-1) at ~400 mbsf. We also note the disappearance of δ-Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g(-1)) and manganese (up to 20 μmol g(-1)). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate-reducing pathways. The detection of the manganese- and iron-reducer γ-Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.</AbstractText>
<CopyrightInformation>© 2015 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Torres</LastName>
<ForeName>M E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>CEOAS, Oregon State University, Corvallis, OR, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cox</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>School of Earth Sciences, University of Melbourne, Parkville, Vic., Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hong</LastName>
<ForeName>W-L</ForeName>
<Initials>WL</Initials>
<AffiliationInfo>
<Affiliation>CEOAS, Oregon State University, Corvallis, OR, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McManus</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>CEOAS, Oregon State University, Corvallis, OR, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Geosciences, University of Akron, Akron, OH, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sample</LastName>
<ForeName>J C</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>School of Earth Sciences & Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Destrigneville</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Université de Toulouse, UPS-OMP-LMTG, Toulouse, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gan</LastName>
<ForeName>H M</ForeName>
<Initials>HM</Initials>
<AffiliationInfo>
<Affiliation>School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, Malaysia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gan</LastName>
<ForeName>H Y</ForeName>
<Initials>HY</Initials>
<AffiliationInfo>
<Affiliation>School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, Malaysia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moreau</LastName>
<ForeName>J W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>School of Earth Sciences, University of Melbourne, Parkville, Vic., Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Geobiology</MedlineTA>
<NlmUniqueID>101185472</NlmUniqueID>
<ISSNLinking>1472-4669</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019641">DNA, Archaeal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001105" MajorTopicYN="N">Archaea</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="Y">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019641" MajorTopicYN="N">DNA, Archaeal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="Y">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019015" MajorTopicYN="N">Geologic Sediments</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010140" MajorTopicYN="N" Type="Geographic">Pacific Ocean</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26081483</ArticleId>
<ArticleId IdType="doi">10.1111/gbi.12146</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002743 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002743 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26081483
   |texte=   Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26081483" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024