Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge.

Identifieur interne : 002681 ( PubMed/Corpus ); précédent : 002680; suivant : 002682

Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge.

Auteurs : David M. Cash ; Chris Frost ; Leonardo O. Iheme ; Devrim Ünay ; Melek Kandemir ; Jurgen Fripp ; Olivier Salvado ; Pierrick Bourgeat ; Martin Reuter ; Bruce Fischl ; Marco Lorenzi ; Giovanni B. Frisoni ; Xavier Pennec ; Ronald K. Pierson ; Jeffrey L. Gunter ; Matthew L. Senjem ; Clifford R. Jack ; Nicolas Guizard ; Vladimir S. Fonov ; D Louis Collins ; Marc Modat ; M Jorge Cardoso ; Kelvin K. Leung ; Hongzhi Wang ; Sandhitsu R. Das ; Paul A. Yushkevich ; Ian B. Malone ; Nick C. Fox ; Jonathan M. Schott ; Sebastien Ourselin

Source :

RBID : pubmed:26275383

English descriptors

Abstract

Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated "direct" measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the distribution of atrophy rates in the Alzheimer's disease (AD) and control groups and of required sample sizes to detect a 25% treatment effect, in relation to healthy ageing, with 95% significance and 80% power over follow-up periods of 6, 12, and 24months. Uncertainty in these estimates, and head-to-head comparisons between techniques, were carried out using the bootstrap. The lateral ventricles provided the most stable measurements, followed by the brain. The hippocampi had much more variability across participants, likely because of differences in segmentation protocol and less distinct boundaries. Most methods showed no indication of bias based on the short-term interval results, and direct measures provided good consistency in terms of symmetry and transitivity. The resulting annualized rates of change derived from the model ranged from, for whole brain: -1.4% to -2.2% (AD) and -0.35% to -0.67% (control), for ventricles: 4.6% to 10.2% (AD) and 1.2% to 3.4% (control), and for hippocampi: -1.5% to -7.0% (AD) and -0.4% to -1.4% (control). There were large and statistically significant differences in the sample size requirements between many of the techniques. The lowest sample sizes for each of these structures, for a trial with a 12month follow-up period, were 242 (95% CI: 154 to 422) for whole brain, 168 (95% CI: 112 to 282) for ventricles, 190 (95% CI: 146 to 268) for left hippocampi, and 158 (95% CI: 116 to 228) for right hippocampi. This analysis represents one of the most extensive statistical comparisons of a large number of different atrophy measurement techniques from around the globe. The challenge data will remain online and publicly available so that other groups can assess their methods.

DOI: 10.1016/j.neuroimage.2015.07.087
PubMed: 26275383

Links to Exploration step

pubmed:26275383

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge.</title>
<author>
<name sortKey="Cash, David M" sort="Cash, David M" uniqKey="Cash D" first="David M" last="Cash">David M. Cash</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK. Electronic address: d.cash@ucl.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frost, Chris" sort="Frost, Chris" uniqKey="Frost C" first="Chris" last="Frost">Chris Frost</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK; Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iheme, Leonardo O" sort="Iheme, Leonardo O" uniqKey="Iheme L" first="Leonardo O" last="Iheme">Leonardo O. Iheme</name>
<affiliation>
<nlm:affiliation>Electrical & Electronics Engineering, Bahcesehir University, Istanbul, Turkey.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Unay, Devrim" sort="Unay, Devrim" uniqKey="Unay D" first="Devrim" last="Ünay">Devrim Ünay</name>
<affiliation>
<nlm:affiliation>Biomedical Engineering, Bahcesehir University, Istanbul, Turkey.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kandemir, Melek" sort="Kandemir, Melek" uniqKey="Kandemir M" first="Melek" last="Kandemir">Melek Kandemir</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Bayindir Hospital Icerenkoy, Istanbul, Turkey.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fripp, Jurgen" sort="Fripp, Jurgen" uniqKey="Fripp J" first="Jurgen" last="Fripp">Jurgen Fripp</name>
<affiliation>
<nlm:affiliation>The Australian eHealth Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Salvado, Olivier" sort="Salvado, Olivier" uniqKey="Salvado O" first="Olivier" last="Salvado">Olivier Salvado</name>
<affiliation>
<nlm:affiliation>The Australian eHealth Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bourgeat, Pierrick" sort="Bourgeat, Pierrick" uniqKey="Bourgeat P" first="Pierrick" last="Bourgeat">Pierrick Bourgeat</name>
<affiliation>
<nlm:affiliation>The Australian eHealth Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reuter, Martin" sort="Reuter, Martin" uniqKey="Reuter M" first="Martin" last="Reuter">Martin Reuter</name>
<affiliation>
<nlm:affiliation>Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fischl, Bruce" sort="Fischl, Bruce" uniqKey="Fischl B" first="Bruce" last="Fischl">Bruce Fischl</name>
<affiliation>
<nlm:affiliation>Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lorenzi, Marco" sort="Lorenzi, Marco" uniqKey="Lorenzi M" first="Marco" last="Lorenzi">Marco Lorenzi</name>
<affiliation>
<nlm:affiliation>Asclepios Research Project, INRIA Sophia Antipolis, Sophia Antipolis, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frisoni, Giovanni B" sort="Frisoni, Giovanni B" uniqKey="Frisoni G" first="Giovanni B" last="Frisoni">Giovanni B. Frisoni</name>
<affiliation>
<nlm:affiliation>IRCCS San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and Laboratoire de Neuroimagerie du Vieillissement (LANVIE), University Hospitals and University of Geneva, Geneva, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pennec, Xavier" sort="Pennec, Xavier" uniqKey="Pennec X" first="Xavier" last="Pennec">Xavier Pennec</name>
<affiliation>
<nlm:affiliation>Asclepios Research Project, INRIA Sophia Antipolis, Sophia Antipolis, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pierson, Ronald K" sort="Pierson, Ronald K" uniqKey="Pierson R" first="Ronald K" last="Pierson">Ronald K. Pierson</name>
<affiliation>
<nlm:affiliation>Brain Image Analysis, LLC, Coralville, IA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gunter, Jeffrey L" sort="Gunter, Jeffrey L" uniqKey="Gunter J" first="Jeffrey L" last="Gunter">Jeffrey L. Gunter</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Mayo Clinic, Rochester, MN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Senjem, Matthew L" sort="Senjem, Matthew L" uniqKey="Senjem M" first="Matthew L" last="Senjem">Matthew L. Senjem</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Mayo Clinic, Rochester, MN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jack, Clifford R" sort="Jack, Clifford R" uniqKey="Jack C" first="Clifford R" last="Jack">Clifford R. Jack</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Mayo Clinic, Rochester, MN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guizard, Nicolas" sort="Guizard, Nicolas" uniqKey="Guizard N" first="Nicolas" last="Guizard">Nicolas Guizard</name>
<affiliation>
<nlm:affiliation>McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fonov, Vladimir S" sort="Fonov, Vladimir S" uniqKey="Fonov V" first="Vladimir S" last="Fonov">Vladimir S. Fonov</name>
<affiliation>
<nlm:affiliation>McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Collins, D Louis" sort="Collins, D Louis" uniqKey="Collins D" first="D Louis" last="Collins">D Louis Collins</name>
<affiliation>
<nlm:affiliation>McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Modat, Marc" sort="Modat, Marc" uniqKey="Modat M" first="Marc" last="Modat">Marc Modat</name>
<affiliation>
<nlm:affiliation>Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cardoso, M Jorge" sort="Cardoso, M Jorge" uniqKey="Cardoso M" first="M Jorge" last="Cardoso">M Jorge Cardoso</name>
<affiliation>
<nlm:affiliation>Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leung, Kelvin K" sort="Leung, Kelvin K" uniqKey="Leung K" first="Kelvin K" last="Leung">Kelvin K. Leung</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hongzhi" sort="Wang, Hongzhi" uniqKey="Wang H" first="Hongzhi" last="Wang">Hongzhi Wang</name>
<affiliation>
<nlm:affiliation>Almaden Research Center, IBM Research, Almaden, CA, USA; Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Das, Sandhitsu R" sort="Das, Sandhitsu R" uniqKey="Das S" first="Sandhitsu R" last="Das">Sandhitsu R. Das</name>
<affiliation>
<nlm:affiliation>Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yushkevich, Paul A" sort="Yushkevich, Paul A" uniqKey="Yushkevich P" first="Paul A" last="Yushkevich">Paul A. Yushkevich</name>
<affiliation>
<nlm:affiliation>Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malone, Ian B" sort="Malone, Ian B" uniqKey="Malone I" first="Ian B" last="Malone">Ian B. Malone</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fox, Nick C" sort="Fox, Nick C" uniqKey="Fox N" first="Nick C" last="Fox">Nick C. Fox</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schott, Jonathan M" sort="Schott, Jonathan M" uniqKey="Schott J" first="Jonathan M" last="Schott">Jonathan M. Schott</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ourselin, Sebastien" sort="Ourselin, Sebastien" uniqKey="Ourselin S" first="Sebastien" last="Ourselin">Sebastien Ourselin</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26275383</idno>
<idno type="pmid">26275383</idno>
<idno type="doi">10.1016/j.neuroimage.2015.07.087</idno>
<idno type="wicri:Area/PubMed/Corpus">002681</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002681</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge.</title>
<author>
<name sortKey="Cash, David M" sort="Cash, David M" uniqKey="Cash D" first="David M" last="Cash">David M. Cash</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK. Electronic address: d.cash@ucl.ac.uk.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frost, Chris" sort="Frost, Chris" uniqKey="Frost C" first="Chris" last="Frost">Chris Frost</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK; Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iheme, Leonardo O" sort="Iheme, Leonardo O" uniqKey="Iheme L" first="Leonardo O" last="Iheme">Leonardo O. Iheme</name>
<affiliation>
<nlm:affiliation>Electrical & Electronics Engineering, Bahcesehir University, Istanbul, Turkey.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Unay, Devrim" sort="Unay, Devrim" uniqKey="Unay D" first="Devrim" last="Ünay">Devrim Ünay</name>
<affiliation>
<nlm:affiliation>Biomedical Engineering, Bahcesehir University, Istanbul, Turkey.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kandemir, Melek" sort="Kandemir, Melek" uniqKey="Kandemir M" first="Melek" last="Kandemir">Melek Kandemir</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Bayindir Hospital Icerenkoy, Istanbul, Turkey.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fripp, Jurgen" sort="Fripp, Jurgen" uniqKey="Fripp J" first="Jurgen" last="Fripp">Jurgen Fripp</name>
<affiliation>
<nlm:affiliation>The Australian eHealth Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Salvado, Olivier" sort="Salvado, Olivier" uniqKey="Salvado O" first="Olivier" last="Salvado">Olivier Salvado</name>
<affiliation>
<nlm:affiliation>The Australian eHealth Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bourgeat, Pierrick" sort="Bourgeat, Pierrick" uniqKey="Bourgeat P" first="Pierrick" last="Bourgeat">Pierrick Bourgeat</name>
<affiliation>
<nlm:affiliation>The Australian eHealth Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reuter, Martin" sort="Reuter, Martin" uniqKey="Reuter M" first="Martin" last="Reuter">Martin Reuter</name>
<affiliation>
<nlm:affiliation>Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fischl, Bruce" sort="Fischl, Bruce" uniqKey="Fischl B" first="Bruce" last="Fischl">Bruce Fischl</name>
<affiliation>
<nlm:affiliation>Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lorenzi, Marco" sort="Lorenzi, Marco" uniqKey="Lorenzi M" first="Marco" last="Lorenzi">Marco Lorenzi</name>
<affiliation>
<nlm:affiliation>Asclepios Research Project, INRIA Sophia Antipolis, Sophia Antipolis, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frisoni, Giovanni B" sort="Frisoni, Giovanni B" uniqKey="Frisoni G" first="Giovanni B" last="Frisoni">Giovanni B. Frisoni</name>
<affiliation>
<nlm:affiliation>IRCCS San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and Laboratoire de Neuroimagerie du Vieillissement (LANVIE), University Hospitals and University of Geneva, Geneva, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pennec, Xavier" sort="Pennec, Xavier" uniqKey="Pennec X" first="Xavier" last="Pennec">Xavier Pennec</name>
<affiliation>
<nlm:affiliation>Asclepios Research Project, INRIA Sophia Antipolis, Sophia Antipolis, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pierson, Ronald K" sort="Pierson, Ronald K" uniqKey="Pierson R" first="Ronald K" last="Pierson">Ronald K. Pierson</name>
<affiliation>
<nlm:affiliation>Brain Image Analysis, LLC, Coralville, IA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gunter, Jeffrey L" sort="Gunter, Jeffrey L" uniqKey="Gunter J" first="Jeffrey L" last="Gunter">Jeffrey L. Gunter</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Mayo Clinic, Rochester, MN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Senjem, Matthew L" sort="Senjem, Matthew L" uniqKey="Senjem M" first="Matthew L" last="Senjem">Matthew L. Senjem</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Mayo Clinic, Rochester, MN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jack, Clifford R" sort="Jack, Clifford R" uniqKey="Jack C" first="Clifford R" last="Jack">Clifford R. Jack</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Mayo Clinic, Rochester, MN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guizard, Nicolas" sort="Guizard, Nicolas" uniqKey="Guizard N" first="Nicolas" last="Guizard">Nicolas Guizard</name>
<affiliation>
<nlm:affiliation>McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fonov, Vladimir S" sort="Fonov, Vladimir S" uniqKey="Fonov V" first="Vladimir S" last="Fonov">Vladimir S. Fonov</name>
<affiliation>
<nlm:affiliation>McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Collins, D Louis" sort="Collins, D Louis" uniqKey="Collins D" first="D Louis" last="Collins">D Louis Collins</name>
<affiliation>
<nlm:affiliation>McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Modat, Marc" sort="Modat, Marc" uniqKey="Modat M" first="Marc" last="Modat">Marc Modat</name>
<affiliation>
<nlm:affiliation>Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cardoso, M Jorge" sort="Cardoso, M Jorge" uniqKey="Cardoso M" first="M Jorge" last="Cardoso">M Jorge Cardoso</name>
<affiliation>
<nlm:affiliation>Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leung, Kelvin K" sort="Leung, Kelvin K" uniqKey="Leung K" first="Kelvin K" last="Leung">Kelvin K. Leung</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hongzhi" sort="Wang, Hongzhi" uniqKey="Wang H" first="Hongzhi" last="Wang">Hongzhi Wang</name>
<affiliation>
<nlm:affiliation>Almaden Research Center, IBM Research, Almaden, CA, USA; Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Das, Sandhitsu R" sort="Das, Sandhitsu R" uniqKey="Das S" first="Sandhitsu R" last="Das">Sandhitsu R. Das</name>
<affiliation>
<nlm:affiliation>Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yushkevich, Paul A" sort="Yushkevich, Paul A" uniqKey="Yushkevich P" first="Paul A" last="Yushkevich">Paul A. Yushkevich</name>
<affiliation>
<nlm:affiliation>Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malone, Ian B" sort="Malone, Ian B" uniqKey="Malone I" first="Ian B" last="Malone">Ian B. Malone</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fox, Nick C" sort="Fox, Nick C" uniqKey="Fox N" first="Nick C" last="Fox">Nick C. Fox</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schott, Jonathan M" sort="Schott, Jonathan M" uniqKey="Schott J" first="Jonathan M" last="Schott">Jonathan M. Schott</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ourselin, Sebastien" sort="Ourselin, Sebastien" uniqKey="Ourselin S" first="Sebastien" last="Ourselin">Sebastien Ourselin</name>
<affiliation>
<nlm:affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">NeuroImage</title>
<idno type="eISSN">1095-9572</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aged</term>
<term>Alzheimer Disease (pathology)</term>
<term>Atrophy</term>
<term>Brain (pathology)</term>
<term>Data Interpretation, Statistical</term>
<term>Female</term>
<term>Hippocampus (pathology)</term>
<term>Humans</term>
<term>Image Interpretation, Computer-Assisted (methods)</term>
<term>Magnetic Resonance Imaging (methods)</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Reproducibility of Results</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Image Interpretation, Computer-Assisted</term>
<term>Magnetic Resonance Imaging</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Alzheimer Disease</term>
<term>Brain</term>
<term>Hippocampus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Atrophy</term>
<term>Data Interpretation, Statistical</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Reproducibility of Results</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated "direct" measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the distribution of atrophy rates in the Alzheimer's disease (AD) and control groups and of required sample sizes to detect a 25% treatment effect, in relation to healthy ageing, with 95% significance and 80% power over follow-up periods of 6, 12, and 24months. Uncertainty in these estimates, and head-to-head comparisons between techniques, were carried out using the bootstrap. The lateral ventricles provided the most stable measurements, followed by the brain. The hippocampi had much more variability across participants, likely because of differences in segmentation protocol and less distinct boundaries. Most methods showed no indication of bias based on the short-term interval results, and direct measures provided good consistency in terms of symmetry and transitivity. The resulting annualized rates of change derived from the model ranged from, for whole brain: -1.4% to -2.2% (AD) and -0.35% to -0.67% (control), for ventricles: 4.6% to 10.2% (AD) and 1.2% to 3.4% (control), and for hippocampi: -1.5% to -7.0% (AD) and -0.4% to -1.4% (control). There were large and statistically significant differences in the sample size requirements between many of the techniques. The lowest sample sizes for each of these structures, for a trial with a 12month follow-up period, were 242 (95% CI: 154 to 422) for whole brain, 168 (95% CI: 112 to 282) for ventricles, 190 (95% CI: 146 to 268) for left hippocampi, and 158 (95% CI: 116 to 228) for right hippocampi. This analysis represents one of the most extensive statistical comparisons of a large number of different atrophy measurement techniques from around the globe. The challenge data will remain online and publicly available so that other groups can assess their methods.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26275383</PMID>
<DateCreated>
<Year>2015</Year>
<Month>10</Month>
<Day>28</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-9572</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>123</Volume>
<PubDate>
<Year>2015</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>NeuroImage</Title>
<ISOAbbreviation>Neuroimage</ISOAbbreviation>
</Journal>
<ArticleTitle>Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge.</ArticleTitle>
<Pagination>
<MedlinePgn>149-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.neuroimage.2015.07.087</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1053-8119(15)00718-1</ELocationID>
<Abstract>
<AbstractText>Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated "direct" measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the distribution of atrophy rates in the Alzheimer's disease (AD) and control groups and of required sample sizes to detect a 25% treatment effect, in relation to healthy ageing, with 95% significance and 80% power over follow-up periods of 6, 12, and 24months. Uncertainty in these estimates, and head-to-head comparisons between techniques, were carried out using the bootstrap. The lateral ventricles provided the most stable measurements, followed by the brain. The hippocampi had much more variability across participants, likely because of differences in segmentation protocol and less distinct boundaries. Most methods showed no indication of bias based on the short-term interval results, and direct measures provided good consistency in terms of symmetry and transitivity. The resulting annualized rates of change derived from the model ranged from, for whole brain: -1.4% to -2.2% (AD) and -0.35% to -0.67% (control), for ventricles: 4.6% to 10.2% (AD) and 1.2% to 3.4% (control), and for hippocampi: -1.5% to -7.0% (AD) and -0.4% to -1.4% (control). There were large and statistically significant differences in the sample size requirements between many of the techniques. The lowest sample sizes for each of these structures, for a trial with a 12month follow-up period, were 242 (95% CI: 154 to 422) for whole brain, 168 (95% CI: 112 to 282) for ventricles, 190 (95% CI: 146 to 268) for left hippocampi, and 158 (95% CI: 116 to 228) for right hippocampi. This analysis represents one of the most extensive statistical comparisons of a large number of different atrophy measurement techniques from around the globe. The challenge data will remain online and publicly available so that other groups can assess their methods.</AbstractText>
<CopyrightInformation>Copyright © 2015. Published by Elsevier Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cash</LastName>
<ForeName>David M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK. Electronic address: d.cash@ucl.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frost</LastName>
<ForeName>Chris</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK; Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Iheme</LastName>
<ForeName>Leonardo O</ForeName>
<Initials>LO</Initials>
<AffiliationInfo>
<Affiliation>Electrical & Electronics Engineering, Bahcesehir University, Istanbul, Turkey.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ünay</LastName>
<ForeName>Devrim</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Biomedical Engineering, Bahcesehir University, Istanbul, Turkey.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kandemir</LastName>
<ForeName>Melek</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, Bayindir Hospital Icerenkoy, Istanbul, Turkey.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fripp</LastName>
<ForeName>Jurgen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>The Australian eHealth Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salvado</LastName>
<ForeName>Olivier</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>The Australian eHealth Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bourgeat</LastName>
<ForeName>Pierrick</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>The Australian eHealth Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reuter</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fischl</LastName>
<ForeName>Bruce</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lorenzi</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Asclepios Research Project, INRIA Sophia Antipolis, Sophia Antipolis, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frisoni</LastName>
<ForeName>Giovanni B</ForeName>
<Initials>GB</Initials>
<AffiliationInfo>
<Affiliation>IRCCS San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and Laboratoire de Neuroimagerie du Vieillissement (LANVIE), University Hospitals and University of Geneva, Geneva, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pennec</LastName>
<ForeName>Xavier</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Asclepios Research Project, INRIA Sophia Antipolis, Sophia Antipolis, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pierson</LastName>
<ForeName>Ronald K</ForeName>
<Initials>RK</Initials>
<AffiliationInfo>
<Affiliation>Brain Image Analysis, LLC, Coralville, IA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gunter</LastName>
<ForeName>Jeffrey L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Mayo Clinic, Rochester, MN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Senjem</LastName>
<ForeName>Matthew L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Mayo Clinic, Rochester, MN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jack</LastName>
<ForeName>Clifford R</ForeName>
<Initials>CR</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>Department of Radiology, Mayo Clinic, Rochester, MN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guizard</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fonov</LastName>
<ForeName>Vladimir S</ForeName>
<Initials>VS</Initials>
<AffiliationInfo>
<Affiliation>McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Collins</LastName>
<ForeName>D Louis</ForeName>
<Initials>DL</Initials>
<AffiliationInfo>
<Affiliation>McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Modat</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cardoso</LastName>
<ForeName>M Jorge</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leung</LastName>
<ForeName>Kelvin K</ForeName>
<Initials>KK</Initials>
<AffiliationInfo>
<Affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Hongzhi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Almaden Research Center, IBM Research, Almaden, CA, USA; Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Das</LastName>
<ForeName>Sandhitsu R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yushkevich</LastName>
<ForeName>Paul A</ForeName>
<Initials>PA</Initials>
<AffiliationInfo>
<Affiliation>Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Malone</LastName>
<ForeName>Ian B</ForeName>
<Initials>IB</Initials>
<AffiliationInfo>
<Affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fox</LastName>
<ForeName>Nick C</ForeName>
<Initials>NC</Initials>
<AffiliationInfo>
<Affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schott</LastName>
<ForeName>Jonathan M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ourselin</LastName>
<ForeName>Sebastien</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Dementia Research Centre, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, UCL, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>166</GrantID>
<Agency>Alzheimer's Society</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>G0601846</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>R01 AG037376</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neuroimage</MedlineTA>
<NlmUniqueID>9215515</NlmUniqueID>
<ISSNLinking>1053-8119</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2010 Dec;68(6):825-34</RefSource>
<PMID Version="1">21181717</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2008 Aug 15;42(2):696-709</RefSource>
<PMID Version="1">18571436</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jun 1;56(3):907-22</RefSource>
<PMID Version="1">21352927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jul 1;57(1):15-8</RefSource>
<PMID Version="1">21296168</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Anal. 2011 Aug;15(4):489-97</RefSource>
<PMID Version="1">21388857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Oct 15;58(4):1051-9</RefSource>
<PMID Version="1">21835253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Alzheimers Dis. 2011;26 Suppl 3:61-75</RefSource>
<PMID Version="1">21971451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2012 Feb 1;59(3):2362-73</RefSource>
<PMID Version="1">21945694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2012 Feb 15;59(4):3995-4005</RefSource>
<PMID Version="1">22056457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2012 Jul 16;61(4):1402-18</RefSource>
<PMID Version="1">22430496</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2012 Aug 15;62(2):774-81</RefSource>
<PMID Version="1">22248573</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2012 Nov;33(11):2586-602</RefSource>
<PMID Version="1">21830259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 1997 Oct;16(5):623-9</RefSource>
<PMID Version="1">9368118</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 1998 Feb;17(1):87-97</RefSource>
<PMID Version="1">9617910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1999 Feb;9(2):179-94</RefSource>
<PMID Version="1">9931268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stat Med. 2004 Nov 15;23(21):3275-86</RefSource>
<PMID Version="1">15490432</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Jul 1;26(3):839-51</RefSource>
<PMID Version="1">15955494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol. 2006 Sep;253(9):1147-53</RefSource>
<PMID Version="1">16998650</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroinformatics. 2007 Spring;5(1):11-34</RefSource>
<PMID Version="1">17426351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2007 Jul 15;36(4):1200-6</RefSource>
<PMID Version="1">17537648</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Anal. 2008 Feb;12(1):26-41</RefSource>
<PMID Version="1">17659998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2008 Aug;29(8):1199-203</RefSource>
<PMID Version="1">17368654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2013 Feb 1;66:648-61</RefSource>
<PMID Version="1">23153970</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2013 Feb;12(2):207-16</RefSource>
<PMID Version="1">23332364</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stat Med. 2008 Aug 30;27(19):3717-31</RefSource>
<PMID Version="1">18484598</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biometrics. 1993 Dec;49(4):1022-32</RefSource>
<PMID Version="1">7906957</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Comput Comput Assist Interv. 2008;11(Pt 1):754-61</RefSource>
<PMID Version="1">18979814</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Alzheimers Dement. 2009 Jul;5(4):324-39</RefSource>
<PMID Version="1">19560103</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Apr 1;50(2):434-45</RefSource>
<PMID Version="1">20005963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Apr 1;50(2):516-23</RefSource>
<PMID Version="1">20034579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Methods Programs Biomed. 2010 Jun;98(3):278-84</RefSource>
<PMID Version="1">19818524</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Jul 15;51(4):1345-59</RefSource>
<PMID Version="1">20230901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20</RefSource>
<PMID Version="1">20378467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Dec;53(4):1181-96</RefSource>
<PMID Version="1">20637289</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jan 1;54(1):328-36</RefSource>
<PMID Version="1">20600977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jan 15;54(2):940-54</RefSource>
<PMID Version="1">20851199</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2013 Apr 15;70:33-6</RefSource>
<PMID Version="1">23274184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2013 Apr;12(4):357-67</RefSource>
<PMID Version="1">23477989</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Alzheimers Dement. 2013 May;9(3):332-7</RefSource>
<PMID Version="1">23110865</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Anal. 2013 Aug;17(6):671-84</RefSource>
<PMID Version="1">23510558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2013 Nov 1;81:470-83</RefSource>
<PMID Version="1">23685032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):E4502-9</RefSource>
<PMID Version="1">24194552</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2014 Nov 1;101:390-403</RefSource>
<PMID Version="1">25026156</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2013 Feb 1;66:249-60</RefSource>
<PMID Version="1">23123680</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Alzheimers Dement. 2015 Feb;11(2):111-25</RefSource>
<PMID Version="1">25267715</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2015 Jul 15;115:224-34</RefSource>
<PMID Version="1">25963734</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 1999 Oct;18(10):897-908</RefSource>
<PMID Version="1">10628949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Anal. 2001 Jun;5(2):143-56</RefSource>
<PMID Version="1">11516708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2002 Jan 31;33(3):341-55</RefSource>
<PMID Version="1">11832223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Med Imaging Graph. 2002 Jul-Aug;26(4):251-64</RefSource>
<PMID Version="1">12074920</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson Imaging. 2002 Sep;16(3):305-10</RefSource>
<PMID Version="1">12205587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson Imaging. 2003 Jul;18(1):16-24</RefSource>
<PMID Version="1">12815635</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2004 Feb 24;62(4):591-600</RefSource>
<PMID Version="1">14981176</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1984 Jul;34(7):939-44</RefSource>
<PMID Version="1">6610841</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acquir Immune Defic Syndr. 1991;4(7):667-76</RefSource>
<PMID Version="1">2051307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stat Med. 1992 Sep 30;11(13):1685-704</RefSource>
<PMID Version="1">1485053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Apr 1;55(3):1091-108</RefSource>
<PMID Version="1">21195780</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000544" MajorTopicYN="N">Alzheimer Disease</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001284" MajorTopicYN="N">Atrophy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003627" MajorTopicYN="N">Data Interpretation, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006624" MajorTopicYN="N">Hippocampus</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007090" MajorTopicYN="N">Image Interpretation, Computer-Assisted</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008279" MajorTopicYN="N">Magnetic Resonance Imaging</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4634338</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>06</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26275383</ArticleId>
<ArticleId IdType="pii">S1053-8119(15)00718-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.neuroimage.2015.07.087</ArticleId>
<ArticleId IdType="pmc">PMC4634338</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002681 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002681 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26275383
   |texte=   Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26275383" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024