Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Diversity Arrays Technology (DArT) Marker Platforms for Diversity Analysis and Linkage Mapping in a Complex Crop, the Octoploid Cultivated Strawberry (Fragaria × ananassa).

Identifieur interne : 002641 ( PubMed/Corpus ); précédent : 002640; suivant : 002642

Diversity Arrays Technology (DArT) Marker Platforms for Diversity Analysis and Linkage Mapping in a Complex Crop, the Octoploid Cultivated Strawberry (Fragaria × ananassa).

Auteurs : José F. Sánchez-Sevilla ; Aniko Horvath ; Miguel A. Botella ; Amèlia Gaston ; Kevin Folta ; Andrzej Kilian ; Beatrice Denoyes ; Iraida Amaya

Source :

RBID : pubmed:26675207

English descriptors

Abstract

Cultivated strawberry (Fragaria × ananassa) is a genetically complex allo-octoploid crop with 28 pairs of chromosomes (2n = 8x = 56) for which a genome sequence is not yet available. The diploid Fragaria vesca is considered the donor species of one of the octoploid sub-genomes and its available genome sequence can be used as a reference for genomic studies. A wide number of strawberry cultivars are stored in ex situ germplasm collections world-wide but a number of previous studies have addressed the genetic diversity present within a limited number of these collections. Here, we report the development and application of two platforms based on the implementation of Diversity Array Technology (DArT) markers for high-throughput genotyping in strawberry. The first DArT microarray was used to evaluate the genetic diversity of 62 strawberry cultivars that represent a wide range of variation based on phenotype, geographical and temporal origin and pedigrees. A total of 603 DArT markers were used to evaluate the diversity and structure of the population and their cluster analyses revealed that these markers were highly efficient in classifying the accessions in groups based on historical, geographical and pedigree-based cues. The second DArTseq platform took benefit of the complexity reduction method optimized for strawberry and the development of next generation sequencing technologies. The strawberry DArTseq was used to generate a total of 9,386 SNP markers in the previously developed '232' × '1392' mapping population, of which, 4,242 high quality markers were further selected to saturate this map after several filtering steps. The high-throughput platforms here developed for genotyping strawberry will facilitate genome-wide characterizations of large accessions sets and complement other available options.

DOI: 10.1371/journal.pone.0144960
PubMed: 26675207

Links to Exploration step

pubmed:26675207

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Diversity Arrays Technology (DArT) Marker Platforms for Diversity Analysis and Linkage Mapping in a Complex Crop, the Octoploid Cultivated Strawberry (Fragaria × ananassa).</title>
<author>
<name sortKey="Sanchez Sevilla, Jose F" sort="Sanchez Sevilla, Jose F" uniqKey="Sanchez Sevilla J" first="José F" last="Sánchez-Sevilla">José F. Sánchez-Sevilla</name>
<affiliation>
<nlm:affiliation>Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Churriana, Cortijo de la Cruz, 29140, Málaga, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Horvath, Aniko" sort="Horvath, Aniko" uniqKey="Horvath A" first="Aniko" last="Horvath">Aniko Horvath</name>
<affiliation>
<nlm:affiliation>INRA, UMR 1332 BFP, F-33140 Villenave d'Ornon, France, Université de Bordeaux, UMR 1332 NFP, F-33140, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Botella, Miguel A" sort="Botella, Miguel A" uniqKey="Botella M" first="Miguel A" last="Botella">Miguel A. Botella</name>
<affiliation>
<nlm:affiliation>Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC),
Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gaston, Amelia" sort="Gaston, Amelia" uniqKey="Gaston A" first="Amèlia" last="Gaston">Amèlia Gaston</name>
<affiliation>
<nlm:affiliation>INRA, UMR 1332 BFP, F-33140 Villenave d'Ornon, France, Université de Bordeaux, UMR 1332 NFP, F-33140, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Folta, Kevin" sort="Folta, Kevin" uniqKey="Folta K" first="Kevin" last="Folta">Kevin Folta</name>
<affiliation>
<nlm:affiliation>University of Florida, Horticultural Sciences Department, Gainesville, Florida, 32611, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kilian, Andrzej" sort="Kilian, Andrzej" uniqKey="Kilian A" first="Andrzej" last="Kilian">Andrzej Kilian</name>
<affiliation>
<nlm:affiliation>Diversity Arrays Technology Pty Ltd, Building 3, University of Canberra, Bruce, ACT 2617, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denoyes, Beatrice" sort="Denoyes, Beatrice" uniqKey="Denoyes B" first="Beatrice" last="Denoyes">Beatrice Denoyes</name>
<affiliation>
<nlm:affiliation>INRA, UMR 1332 BFP, F-33140 Villenave d'Ornon, France, Université de Bordeaux, UMR 1332 NFP, F-33140, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amaya, Iraida" sort="Amaya, Iraida" uniqKey="Amaya I" first="Iraida" last="Amaya">Iraida Amaya</name>
<affiliation>
<nlm:affiliation>Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Churriana, Cortijo de la Cruz, 29140, Málaga, Spain.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26675207</idno>
<idno type="pmid">26675207</idno>
<idno type="doi">10.1371/journal.pone.0144960</idno>
<idno type="wicri:Area/PubMed/Corpus">002641</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002641</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Diversity Arrays Technology (DArT) Marker Platforms for Diversity Analysis and Linkage Mapping in a Complex Crop, the Octoploid Cultivated Strawberry (Fragaria × ananassa).</title>
<author>
<name sortKey="Sanchez Sevilla, Jose F" sort="Sanchez Sevilla, Jose F" uniqKey="Sanchez Sevilla J" first="José F" last="Sánchez-Sevilla">José F. Sánchez-Sevilla</name>
<affiliation>
<nlm:affiliation>Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Churriana, Cortijo de la Cruz, 29140, Málaga, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Horvath, Aniko" sort="Horvath, Aniko" uniqKey="Horvath A" first="Aniko" last="Horvath">Aniko Horvath</name>
<affiliation>
<nlm:affiliation>INRA, UMR 1332 BFP, F-33140 Villenave d'Ornon, France, Université de Bordeaux, UMR 1332 NFP, F-33140, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Botella, Miguel A" sort="Botella, Miguel A" uniqKey="Botella M" first="Miguel A" last="Botella">Miguel A. Botella</name>
<affiliation>
<nlm:affiliation>Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC),
Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gaston, Amelia" sort="Gaston, Amelia" uniqKey="Gaston A" first="Amèlia" last="Gaston">Amèlia Gaston</name>
<affiliation>
<nlm:affiliation>INRA, UMR 1332 BFP, F-33140 Villenave d'Ornon, France, Université de Bordeaux, UMR 1332 NFP, F-33140, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Folta, Kevin" sort="Folta, Kevin" uniqKey="Folta K" first="Kevin" last="Folta">Kevin Folta</name>
<affiliation>
<nlm:affiliation>University of Florida, Horticultural Sciences Department, Gainesville, Florida, 32611, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kilian, Andrzej" sort="Kilian, Andrzej" uniqKey="Kilian A" first="Andrzej" last="Kilian">Andrzej Kilian</name>
<affiliation>
<nlm:affiliation>Diversity Arrays Technology Pty Ltd, Building 3, University of Canberra, Bruce, ACT 2617, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denoyes, Beatrice" sort="Denoyes, Beatrice" uniqKey="Denoyes B" first="Beatrice" last="Denoyes">Beatrice Denoyes</name>
<affiliation>
<nlm:affiliation>INRA, UMR 1332 BFP, F-33140 Villenave d'Ornon, France, Université de Bordeaux, UMR 1332 NFP, F-33140, Villenave d'Ornon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amaya, Iraida" sort="Amaya, Iraida" uniqKey="Amaya I" first="Iraida" last="Amaya">Iraida Amaya</name>
<affiliation>
<nlm:affiliation>Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Churriana, Cortijo de la Cruz, 29140, Málaga, Spain.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Cluster Analysis</term>
<term>Diploidy</term>
<term>Fragaria (genetics)</term>
<term>Genetic Linkage</term>
<term>Genetic Variation</term>
<term>Genome, Plant</term>
<term>Genomics (methods)</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Polyploidy</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fragaria</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Cluster Analysis</term>
<term>Diploidy</term>
<term>Genetic Linkage</term>
<term>Genetic Variation</term>
<term>Genome, Plant</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Polyploidy</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cultivated strawberry (Fragaria × ananassa) is a genetically complex allo-octoploid crop with 28 pairs of chromosomes (2n = 8x = 56) for which a genome sequence is not yet available. The diploid Fragaria vesca is considered the donor species of one of the octoploid sub-genomes and its available genome sequence can be used as a reference for genomic studies. A wide number of strawberry cultivars are stored in ex situ germplasm collections world-wide but a number of previous studies have addressed the genetic diversity present within a limited number of these collections. Here, we report the development and application of two platforms based on the implementation of Diversity Array Technology (DArT) markers for high-throughput genotyping in strawberry. The first DArT microarray was used to evaluate the genetic diversity of 62 strawberry cultivars that represent a wide range of variation based on phenotype, geographical and temporal origin and pedigrees. A total of 603 DArT markers were used to evaluate the diversity and structure of the population and their cluster analyses revealed that these markers were highly efficient in classifying the accessions in groups based on historical, geographical and pedigree-based cues. The second DArTseq platform took benefit of the complexity reduction method optimized for strawberry and the development of next generation sequencing technologies. The strawberry DArTseq was used to generate a total of 9,386 SNP markers in the previously developed '232' × '1392' mapping population, of which, 4,242 high quality markers were further selected to saturate this map after several filtering steps. The high-throughput platforms here developed for genotyping strawberry will facilitate genome-wide characterizations of large accessions sets and complement other available options.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26675207</PMID>
<DateCreated>
<Year>2015</Year>
<Month>12</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Diversity Arrays Technology (DArT) Marker Platforms for Diversity Analysis and Linkage Mapping in a Complex Crop, the Octoploid Cultivated Strawberry (Fragaria × ananassa).</ArticleTitle>
<Pagination>
<MedlinePgn>e0144960</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0144960</ELocationID>
<Abstract>
<AbstractText>Cultivated strawberry (Fragaria × ananassa) is a genetically complex allo-octoploid crop with 28 pairs of chromosomes (2n = 8x = 56) for which a genome sequence is not yet available. The diploid Fragaria vesca is considered the donor species of one of the octoploid sub-genomes and its available genome sequence can be used as a reference for genomic studies. A wide number of strawberry cultivars are stored in ex situ germplasm collections world-wide but a number of previous studies have addressed the genetic diversity present within a limited number of these collections. Here, we report the development and application of two platforms based on the implementation of Diversity Array Technology (DArT) markers for high-throughput genotyping in strawberry. The first DArT microarray was used to evaluate the genetic diversity of 62 strawberry cultivars that represent a wide range of variation based on phenotype, geographical and temporal origin and pedigrees. A total of 603 DArT markers were used to evaluate the diversity and structure of the population and their cluster analyses revealed that these markers were highly efficient in classifying the accessions in groups based on historical, geographical and pedigree-based cues. The second DArTseq platform took benefit of the complexity reduction method optimized for strawberry and the development of next generation sequencing technologies. The strawberry DArTseq was used to generate a total of 9,386 SNP markers in the previously developed '232' × '1392' mapping population, of which, 4,242 high quality markers were further selected to saturate this map after several filtering steps. The high-throughput platforms here developed for genotyping strawberry will facilitate genome-wide characterizations of large accessions sets and complement other available options.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sánchez-Sevilla</LastName>
<ForeName>José F</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Churriana, Cortijo de la Cruz, 29140, Málaga, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Horvath</LastName>
<ForeName>Aniko</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR 1332 BFP, F-33140 Villenave d'Ornon, France, Université de Bordeaux, UMR 1332 NFP, F-33140, Villenave d'Ornon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Botella</LastName>
<ForeName>Miguel A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC),
Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gaston</LastName>
<ForeName>Amèlia</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR 1332 BFP, F-33140 Villenave d'Ornon, France, Université de Bordeaux, UMR 1332 NFP, F-33140, Villenave d'Ornon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Folta</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>University of Florida, Horticultural Sciences Department, Gainesville, Florida, 32611, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kilian</LastName>
<ForeName>Andrzej</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Diversity Arrays Technology Pty Ltd, Building 3, University of Canberra, Bruce, ACT 2617, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Denoyes</LastName>
<ForeName>Beatrice</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR 1332 BFP, F-33140 Villenave d'Ornon, France, Université de Bordeaux, UMR 1332 NFP, F-33140, Villenave d'Ornon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Amaya</LastName>
<ForeName>Iraida</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Churriana, Cortijo de la Cruz, 29140, Málaga, Spain.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Florida, Horticultural Sciences Department, Gainesville, Florida, 32611, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(5):e19379</RefSource>
<PMID Version="1">21573248</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>DNA Res. 2013 Feb;20(1):79-92</RefSource>
<PMID Version="1">23248204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014;9(7):e101673</RefSource>
<PMID Version="1">25006804</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2003 Aug;164(4):1567-87</RefSource>
<PMID Version="1">12930761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2009 Aug;119(3):507-17</RefSource>
<PMID Version="1">19449174</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2007 Jul 15;23(14):1801-6</RefSource>
<PMID Version="1">17485429</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(11):e78037</RefSource>
<PMID Version="1">24223758</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2000 Jun;155(2):945-59</RefSource>
<PMID Version="1">10835412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Sci. 2016 Jan;242:140-50</RefSource>
<PMID Version="1">26566832</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2003 Aug;107(4):619-28</RefSource>
<PMID Version="1">12768242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(6):e67407</RefSource>
<PMID Version="1">23826289</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol Evol. 2014 Dec;6(12):3295-313</RefSource>
<PMID Version="1">25477420</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2008;3(10):e3376</RefSource>
<PMID Version="1">18852878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2011 Feb;43(2):109-16</RefSource>
<PMID Version="1">21186353</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2012 Jun;159(2):851-70</RefSource>
<PMID Version="1">22474217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2012 Oct 1;28(19):2537-9</RefSource>
<PMID Version="1">22820204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Sci. 2012 Mar;184:54-62</RefSource>
<PMID Version="1">22284710</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2008 Aug;179(4):2045-60</RefSource>
<PMID Version="1">18660542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2006 May;112(7):1349-59</RefSource>
<PMID Version="1">16505996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2011 Sep;123(5):755-78</RefSource>
<PMID Version="1">21667037</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Plant Biol. 2014;14:55</RefSource>
<PMID Version="1">24581289</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sci Rep. 2013;3:3399</RefSource>
<PMID Version="1">24292365</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2009;10:39</RefSource>
<PMID Version="1">19159465</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Physiol. 2011 Nov;52(11):1873-903</RefSource>
<PMID Version="1">21984602</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73</RefSource>
<PMID Version="1">291943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2004 Nov;109(7):1385-91</RefSource>
<PMID Version="1">15290052</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(5):e64062</RefSource>
<PMID Version="1">23724020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2001 Feb 15;29(4):E25</RefSource>
<PMID Version="1">11160945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ecol. 2005 Jul;14(8):2611-20</RefSource>
<PMID Version="1">15969739</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome. 2010 Nov;53(11):948-56</RefSource>
<PMID Version="1">21076510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(9):e44684</RefSource>
<PMID Version="1">22984541</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2006 Nov;113(8):1409-20</RefSource>
<PMID Version="1">17033786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Phylogenet Evol. 2009 Jun;51(3):515-30</RefSource>
<PMID Version="1">19166953</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9915-20</RefSource>
<PMID Version="1">15192146</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Biotechnol J. 2014 Aug;12(6):787-96</RefSource>
<PMID Version="1">24646323</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2012 Apr;124(6):1059-77</RefSource>
<PMID Version="1">22215248</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2012;888:67-89</RefSource>
<PMID Version="1">22665276</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Res (Camb). 2011 Oct;93(5):343-9</RefSource>
<PMID Version="1">21878144</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2012 Apr;9(4):357-9</RefSource>
<PMID Version="1">22388286</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2000 Sep 28;407(6803):513-6</RefSource>
<PMID Version="1">11029002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2015;16:155</RefSource>
<PMID Version="1">25886969</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome. 2008 Feb;51(2):120-7</RefSource>
<PMID Version="1">18356946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Hered. 2002 Jan-Feb;93(1):77-8</RefSource>
<PMID Version="1">12011185</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2013;14:120</RefSource>
<PMID Version="1">23432809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Breed. 2012 Mar;29(3):645-660</RefSource>
<PMID Version="1">22408382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2015;10(9):e0137746</RefSource>
<PMID Version="1">26398886</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2010;11:503</RefSource>
<PMID Version="1">20849591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2015 Oct;208(2):482-96</RefSource>
<PMID Version="1">26010039</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2014;15:218</RefSource>
<PMID Version="1">24742100</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2006;7:206</RefSource>
<PMID Version="1">16904008</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2012 May;124(7):1229-40</RefSource>
<PMID Version="1">22218676</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014;9(2):e88446</RefSource>
<PMID Version="1">24523895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome. 1993 Feb;36(1):181-6</RefSource>
<PMID Version="1">18469981</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="Y">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004171" MajorTopicYN="N">Diploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031985" MajorTopicYN="N">Fragaria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008040" MajorTopicYN="Y">Genetic Linkage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="N">Polyploidy</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4682937</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26675207</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0144960</ArticleId>
<ArticleId IdType="pii">PONE-D-15-34975</ArticleId>
<ArticleId IdType="pmc">PMC4682937</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002641 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002641 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26675207
   |texte=   Diversity Arrays Technology (DArT) Marker Platforms for Diversity Analysis and Linkage Mapping in a Complex Crop, the Octoploid Cultivated Strawberry (Fragaria × ananassa).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26675207" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024