Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Semantic Wavelet-Induced Frequency-Tagging (SWIFT) Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas.

Identifieur interne : 002582 ( PubMed/Corpus ); précédent : 002581; suivant : 002583

Semantic Wavelet-Induced Frequency-Tagging (SWIFT) Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas.

Auteurs : Roger Koenig-Robert ; Rufin Vanrullen ; Naotsugu Tsuchiya

Source :

RBID : pubmed:26691722

English descriptors

Abstract

Primate visual systems process natural images in a hierarchical manner: at the early stage, neurons are tuned to local image features, while neurons in high-level areas are tuned to abstract object categories. Standard models of visual processing assume that the transition of tuning from image features to object categories emerges gradually along the visual hierarchy. Direct tests of such models remain difficult due to confounding alteration in low-level image properties when contrasting distinct object categories. When such contrast is performed in a classic functional localizer method, the desired activation in high-level visual areas is typically accompanied with activation in early visual areas. Here we used a novel image-modulation method called SWIFT (semantic wavelet-induced frequency-tagging), a variant of frequency-tagging techniques. Natural images modulated by SWIFT reveal object semantics periodically while keeping low-level properties constant. Using functional magnetic resonance imaging (fMRI), we indeed found that faces and scenes modulated with SWIFT periodically activated the prototypical category-selective areas while they elicited sustained and constant responses in early visual areas. SWIFT and the localizer were selective and specific to a similar extent in activating category-selective areas. Only SWIFT progressively activated the visual pathway from low- to high-level areas, consistent with predictions from standard hierarchical models. We confirmed these results with criterion-free methods, generalizing the validity of our approach and show that it is possible to dissociate neural activation in early and category-selective areas. Our results provide direct evidence for the hierarchical nature of the representation of visual objects along the visual stream and open up future applications of frequency-tagging methods in fMRI.

DOI: 10.1371/journal.pone.0144858
PubMed: 26691722

Links to Exploration step

pubmed:26691722

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Semantic Wavelet-Induced Frequency-Tagging (SWIFT) Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas.</title>
<author>
<name sortKey="Koenig Robert, Roger" sort="Koenig Robert, Roger" uniqKey="Koenig Robert R" first="Roger" last="Koenig-Robert">Roger Koenig-Robert</name>
<affiliation>
<nlm:affiliation>School of Psychological Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Melbourne, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vanrullen, Rufin" sort="Vanrullen, Rufin" uniqKey="Vanrullen R" first="Rufin" last="Vanrullen">Rufin Vanrullen</name>
<affiliation>
<nlm:affiliation>CNRS, UMR5549, Centre de Recherche Cerveau et Cognition, Faculté de Médecine de Purpan, 31052 Toulouse, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsuchiya, Naotsugu" sort="Tsuchiya, Naotsugu" uniqKey="Tsuchiya N" first="Naotsugu" last="Tsuchiya">Naotsugu Tsuchiya</name>
<affiliation>
<nlm:affiliation>School of Psychological Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Melbourne, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26691722</idno>
<idno type="pmid">26691722</idno>
<idno type="doi">10.1371/journal.pone.0144858</idno>
<idno type="wicri:Area/PubMed/Corpus">002582</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002582</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Semantic Wavelet-Induced Frequency-Tagging (SWIFT) Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas.</title>
<author>
<name sortKey="Koenig Robert, Roger" sort="Koenig Robert, Roger" uniqKey="Koenig Robert R" first="Roger" last="Koenig-Robert">Roger Koenig-Robert</name>
<affiliation>
<nlm:affiliation>School of Psychological Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Melbourne, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vanrullen, Rufin" sort="Vanrullen, Rufin" uniqKey="Vanrullen R" first="Rufin" last="Vanrullen">Rufin Vanrullen</name>
<affiliation>
<nlm:affiliation>CNRS, UMR5549, Centre de Recherche Cerveau et Cognition, Faculté de Médecine de Purpan, 31052 Toulouse, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsuchiya, Naotsugu" sort="Tsuchiya, Naotsugu" uniqKey="Tsuchiya N" first="Naotsugu" last="Tsuchiya">Naotsugu Tsuchiya</name>
<affiliation>
<nlm:affiliation>School of Psychological Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Melbourne, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Female</term>
<term>Functional Neuroimaging</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Neurological</term>
<term>Radiography</term>
<term>Visual Pathways (diagnostic imaging)</term>
<term>Visual Pathways (physiology)</term>
<term>Visual Perception (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Visual Pathways</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Visual Pathways</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Female</term>
<term>Functional Neuroimaging</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Neurological</term>
<term>Radiography</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Primate visual systems process natural images in a hierarchical manner: at the early stage, neurons are tuned to local image features, while neurons in high-level areas are tuned to abstract object categories. Standard models of visual processing assume that the transition of tuning from image features to object categories emerges gradually along the visual hierarchy. Direct tests of such models remain difficult due to confounding alteration in low-level image properties when contrasting distinct object categories. When such contrast is performed in a classic functional localizer method, the desired activation in high-level visual areas is typically accompanied with activation in early visual areas. Here we used a novel image-modulation method called SWIFT (semantic wavelet-induced frequency-tagging), a variant of frequency-tagging techniques. Natural images modulated by SWIFT reveal object semantics periodically while keeping low-level properties constant. Using functional magnetic resonance imaging (fMRI), we indeed found that faces and scenes modulated with SWIFT periodically activated the prototypical category-selective areas while they elicited sustained and constant responses in early visual areas. SWIFT and the localizer were selective and specific to a similar extent in activating category-selective areas. Only SWIFT progressively activated the visual pathway from low- to high-level areas, consistent with predictions from standard hierarchical models. We confirmed these results with criterion-free methods, generalizing the validity of our approach and show that it is possible to dissociate neural activation in early and category-selective areas. Our results provide direct evidence for the hierarchical nature of the representation of visual objects along the visual stream and open up future applications of frequency-tagging methods in fMRI.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26691722</PMID>
<DateCreated>
<Year>2015</Year>
<Month>12</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Semantic Wavelet-Induced Frequency-Tagging (SWIFT) Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas.</ArticleTitle>
<Pagination>
<MedlinePgn>e0144858</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0144858</ELocationID>
<Abstract>
<AbstractText>Primate visual systems process natural images in a hierarchical manner: at the early stage, neurons are tuned to local image features, while neurons in high-level areas are tuned to abstract object categories. Standard models of visual processing assume that the transition of tuning from image features to object categories emerges gradually along the visual hierarchy. Direct tests of such models remain difficult due to confounding alteration in low-level image properties when contrasting distinct object categories. When such contrast is performed in a classic functional localizer method, the desired activation in high-level visual areas is typically accompanied with activation in early visual areas. Here we used a novel image-modulation method called SWIFT (semantic wavelet-induced frequency-tagging), a variant of frequency-tagging techniques. Natural images modulated by SWIFT reveal object semantics periodically while keeping low-level properties constant. Using functional magnetic resonance imaging (fMRI), we indeed found that faces and scenes modulated with SWIFT periodically activated the prototypical category-selective areas while they elicited sustained and constant responses in early visual areas. SWIFT and the localizer were selective and specific to a similar extent in activating category-selective areas. Only SWIFT progressively activated the visual pathway from low- to high-level areas, consistent with predictions from standard hierarchical models. We confirmed these results with criterion-free methods, generalizing the validity of our approach and show that it is possible to dissociate neural activation in early and category-selective areas. Our results provide direct evidence for the hierarchical nature of the representation of visual objects along the visual stream and open up future applications of frequency-tagging methods in fMRI.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Koenig-Robert</LastName>
<ForeName>Roger</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>School of Psychological Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Melbourne, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>VanRullen</LastName>
<ForeName>Rufin</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>CNRS, UMR5549, Centre de Recherche Cerveau et Cognition, Faculté de Médecine de Purpan, 31052 Toulouse, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, 31052 Toulouse, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsuchiya</LastName>
<ForeName>Naotsugu</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>School of Psychological Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Melbourne, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Decoding and Controlling Brain Information, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan, 102-8266.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016430">Clinical Trial</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 1987 Apr;94(2):115-47</RefSource>
<PMID Version="1">3575582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vis Neurosci. 1995 Mar-Apr;12(2):371-84</RefSource>
<PMID Version="1">7786857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2002 Nov 14;36(4):739-50</RefSource>
<PMID Version="1">12441061</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):449-54</RefSource>
<PMID Version="1">16407167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2011 Jun 1;1393:73-83</RefSource>
<PMID Version="1">21513918</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1995 Jan;73(1):218-26</RefSource>
<PMID Version="1">7714567</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2003 Mar 6;37(5):865-76</RefSource>
<PMID Version="1">12628176</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8619-24</RefSource>
<PMID Version="1">24812127</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9</RefSource>
<PMID Version="1">7667258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1982;47(3):329-42</RefSource>
<PMID Version="1">7128705</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2005 Oct;8(10):1380-5</RefSource>
<PMID Version="1">16136038</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1999 Feb;9(2):195-207</RefSource>
<PMID Version="1">9931269</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2004 Oct;8(10):457-64</RefSource>
<PMID Version="1">15450510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Jun 1;31(22):8248-58</RefSource>
<PMID Version="1">21632946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1997 May 15;387(6630):281-4</RefSource>
<PMID Version="1">9153392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2007 Aug;11(8):333-41</RefSource>
<PMID Version="1">17631409</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3314-9</RefSource>
<PMID Version="1">10077681</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2006 May 1;30(4):1088-96; discussion 1097-9</RefSource>
<PMID Version="1">16635578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2007 Jun 15;316(5831):1612-5</RefSource>
<PMID Version="1">17569863</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2013 Jul;16(7):974-81</RefSource>
<PMID Version="1">23685719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2002 Dec;17(4):1665-83</RefSource>
<PMID Version="1">12498741</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Syst Neurosci. 2013 Dec 18;7:109</RefSource>
<PMID Version="1">24385955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Nov 16;25(46):10577-97</RefSource>
<PMID Version="1">16291931</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 1998;6(4):316-28</RefSource>
<PMID Version="1">9704268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 1997;5(4):287-92</RefSource>
<PMID Version="1">20408230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2004 Aug;5(8):617-29</RefSource>
<PMID Version="1">15263892</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuropsychol. 2008 Mar;2(Pt 1):79-97</RefSource>
<PMID Version="1">19334306</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 1999 Apr;2(4):370-4</RefSource>
<PMID Version="1">10204545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2006 Jul 1;31(3):968-80</RefSource>
<PMID Version="1">16530430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Oct 24;32(43):14915-20</RefSource>
<PMID Version="1">23100414</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2008 Feb;9(2):123-35</RefSource>
<PMID Version="1">18200027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2001 Sep;46(3):482-6</RefSource>
<PMID Version="1">11550239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2010 May;20(5):1245-53</RefSource>
<PMID Version="1">19759124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2012 Feb 9;73(3):415-34</RefSource>
<PMID Version="1">22325196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2013 Jan 23;33(4):1331-6a</RefSource>
<PMID Version="1">23345209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2013 Jan 15;65:540-55</RefSource>
<PMID Version="1">23036449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2014 Sep;40(6):2987-97</RefSource>
<PMID Version="1">24995674</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2011 Apr;9(4):e1000608</RefSource>
<PMID Version="1">21483719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2013 Nov 1;81:273-82</RefSource>
<PMID Version="1">23664953</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2006 Oct 15;157(1):118-23</RefSource>
<PMID Version="1">16675026</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Mar;50(1):56-71</RefSource>
<PMID Version="1">20025980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Feb 22;32(8):2783-9</RefSource>
<PMID Version="1">22357861</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2007 Sep;17(9):2123-33</RefSource>
<PMID Version="1">17101690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1997 Jun 1;17(11):4302-11</RefSource>
<PMID Version="1">9151747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2009 Sep;12(9):1187-96</RefSource>
<PMID Version="1">19668199</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Cogn. 2012 Jul;79(2):138-57</RefSource>
<PMID Version="1">22330606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 Jan 1;49(1):703-11</RefSource>
<PMID Version="1">19716424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jan 1;54(1):697-704</RefSource>
<PMID Version="1">20656041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2014 Jun 25;34(26):8837-44</RefSource>
<PMID Version="1">24966383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1994 Mar;71(3):856-67</RefSource>
<PMID Version="1">8201425</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2003 Aug;13(8):807-14</RefSource>
<PMID Version="1">12853366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2009 Apr;120(4):738-47</RefSource>
<PMID Version="1">19250866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 1997 Aug;7(4):523-9</RefSource>
<PMID Version="1">9287204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Sep 29;30(39):12978-95</RefSource>
<PMID Version="1">20881116</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2006;155:3-21</RefSource>
<PMID Version="1">17027376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1995 May 12;268(5212):889-93</RefSource>
<PMID Version="1">7754376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2011 Aug 23;1408:27-40</RefSource>
<PMID Version="1">21782159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5487-92</RefSource>
<PMID Version="1">22431587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Wiley Interdiscip Rev Cogn Sci. 2010 Jun;1(3):446-459</RefSource>
<PMID Version="1">21209846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2012 May 10;74(3):567-81</RefSource>
<PMID Version="1">22578507</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1999 Jul 1;19(13):5435-48</RefSource>
<PMID Version="1">10377353</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2003 May 22;342(3):191-5</RefSource>
<PMID Version="1">12757897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2009 Jan 28;1251:245-55</RefSource>
<PMID Version="1">18952069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2000 May;12(3):495-504</RefSource>
<PMID Version="1">10931774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2009 Feb 24;19(4):319-24</RefSource>
<PMID Version="1">19200723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1999 Feb;9(2):179-94</RefSource>
<PMID Version="1">9931268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2001 Jul 12;412(6843):150-7</RefSource>
<PMID Version="1">11449264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 1999 May;23(1):115-25</RefSource>
<PMID Version="1">10402198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1998 Apr 9;392(6676):598-601</RefSource>
<PMID Version="1">9560155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin EEG Neurosci. 2011 Apr;42(2):98-106</RefSource>
<PMID Version="1">21675599</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1999 Apr;9(4):416-29</RefSource>
<PMID Version="1">10191170</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Feb 15;24(4):1012-24</RefSource>
<PMID Version="1">15670678</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2011 Jan;21(1):35-47</RefSource>
<PMID Version="1">20375074</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2004 Jan;14(1):11-22</RefSource>
<PMID Version="1">14654453</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059907" MajorTopicYN="Y">Functional Neuroimaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008959" MajorTopicYN="Y">Models, Neurological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011859" MajorTopicYN="N">Radiography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014795" MajorTopicYN="N">Visual Pathways</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="Y">diagnostic imaging</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014796" MajorTopicYN="N">Visual Perception</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4686956</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>07</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26691722</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0144858</ArticleId>
<ArticleId IdType="pii">PONE-D-15-30803</ArticleId>
<ArticleId IdType="pmc">PMC4686956</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002582 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002582 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26691722
   |texte=   Semantic Wavelet-Induced Frequency-Tagging (SWIFT) Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26691722" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024