Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.

Identifieur interne : 002315 ( PubMed/Corpus ); précédent : 002314; suivant : 002316

Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.

Auteurs : Annaliese S. Mason ; Mathieu Rousseau-Gueutin ; Jérôme Morice ; Philipp E. Bayer ; Naghmeh Besharat ; Anouska Cousin ; Aneeta Pradhan ; Isobel A P. Parkin ; Anne-Marie Chèvre ; Jacqueline Batley ; Matthew N. Nelson

Source :

RBID : pubmed:26614742

English descriptors

Abstract

Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate.

DOI: 10.1534/genetics.115.183210
PubMed: 26614742

Links to Exploration step

pubmed:26614742

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.</title>
<author>
<name sortKey="Mason, Annaliese S" sort="Mason, Annaliese S" uniqKey="Mason A" first="Annaliese S" last="Mason">Annaliese S. Mason</name>
<affiliation>
<nlm:affiliation>Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, 35392 Giessen, Germany School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia annaliese.mason@agrar.uni-giessen.de m.nelson@kew.org.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rousseau Gueutin, Mathieu" sort="Rousseau Gueutin, Mathieu" uniqKey="Rousseau Gueutin M" first="Mathieu" last="Rousseau-Gueutin">Mathieu Rousseau-Gueutin</name>
<affiliation>
<nlm:affiliation>IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morice, Jerome" sort="Morice, Jerome" uniqKey="Morice J" first="Jérôme" last="Morice">Jérôme Morice</name>
<affiliation>
<nlm:affiliation>IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bayer, Philipp E" sort="Bayer, Philipp E" uniqKey="Bayer P" first="Philipp E" last="Bayer">Philipp E. Bayer</name>
<affiliation>
<nlm:affiliation>School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Besharat, Naghmeh" sort="Besharat, Naghmeh" uniqKey="Besharat N" first="Naghmeh" last="Besharat">Naghmeh Besharat</name>
<affiliation>
<nlm:affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cousin, Anouska" sort="Cousin, Anouska" uniqKey="Cousin A" first="Anouska" last="Cousin">Anouska Cousin</name>
<affiliation>
<nlm:affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pradhan, Aneeta" sort="Pradhan, Aneeta" uniqKey="Pradhan A" first="Aneeta" last="Pradhan">Aneeta Pradhan</name>
<affiliation>
<nlm:affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parkin, Isobel A P" sort="Parkin, Isobel A P" uniqKey="Parkin I" first="Isobel A P" last="Parkin">Isobel A P. Parkin</name>
<affiliation>
<nlm:affiliation>Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chevre, Anne Marie" sort="Chevre, Anne Marie" uniqKey="Chevre A" first="Anne-Marie" last="Chèvre">Anne-Marie Chèvre</name>
<affiliation>
<nlm:affiliation>IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Batley, Jacqueline" sort="Batley, Jacqueline" uniqKey="Batley J" first="Jacqueline" last="Batley">Jacqueline Batley</name>
<affiliation>
<nlm:affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Matthew N" sort="Nelson, Matthew N" uniqKey="Nelson M" first="Matthew N" last="Nelson">Matthew N. Nelson</name>
<affiliation>
<nlm:affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia Natural Capital and Plant Health, Royal Botanic Gardens Kew, Ardingly, West Sussex, RH17 6TN, United Kingdom annaliese.mason@agrar.uni-giessen.de m.nelson@kew.org.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26614742</idno>
<idno type="pmid">26614742</idno>
<idno type="doi">10.1534/genetics.115.183210</idno>
<idno type="wicri:Area/PubMed/Corpus">002315</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002315</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.</title>
<author>
<name sortKey="Mason, Annaliese S" sort="Mason, Annaliese S" uniqKey="Mason A" first="Annaliese S" last="Mason">Annaliese S. Mason</name>
<affiliation>
<nlm:affiliation>Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, 35392 Giessen, Germany School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia annaliese.mason@agrar.uni-giessen.de m.nelson@kew.org.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rousseau Gueutin, Mathieu" sort="Rousseau Gueutin, Mathieu" uniqKey="Rousseau Gueutin M" first="Mathieu" last="Rousseau-Gueutin">Mathieu Rousseau-Gueutin</name>
<affiliation>
<nlm:affiliation>IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morice, Jerome" sort="Morice, Jerome" uniqKey="Morice J" first="Jérôme" last="Morice">Jérôme Morice</name>
<affiliation>
<nlm:affiliation>IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bayer, Philipp E" sort="Bayer, Philipp E" uniqKey="Bayer P" first="Philipp E" last="Bayer">Philipp E. Bayer</name>
<affiliation>
<nlm:affiliation>School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Besharat, Naghmeh" sort="Besharat, Naghmeh" uniqKey="Besharat N" first="Naghmeh" last="Besharat">Naghmeh Besharat</name>
<affiliation>
<nlm:affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cousin, Anouska" sort="Cousin, Anouska" uniqKey="Cousin A" first="Anouska" last="Cousin">Anouska Cousin</name>
<affiliation>
<nlm:affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pradhan, Aneeta" sort="Pradhan, Aneeta" uniqKey="Pradhan A" first="Aneeta" last="Pradhan">Aneeta Pradhan</name>
<affiliation>
<nlm:affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parkin, Isobel A P" sort="Parkin, Isobel A P" uniqKey="Parkin I" first="Isobel A P" last="Parkin">Isobel A P. Parkin</name>
<affiliation>
<nlm:affiliation>Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chevre, Anne Marie" sort="Chevre, Anne Marie" uniqKey="Chevre A" first="Anne-Marie" last="Chèvre">Anne-Marie Chèvre</name>
<affiliation>
<nlm:affiliation>IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Batley, Jacqueline" sort="Batley, Jacqueline" uniqKey="Batley J" first="Jacqueline" last="Batley">Jacqueline Batley</name>
<affiliation>
<nlm:affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Matthew N" sort="Nelson, Matthew N" uniqKey="Nelson M" first="Matthew N" last="Nelson">Matthew N. Nelson</name>
<affiliation>
<nlm:affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia Natural Capital and Plant Health, Royal Botanic Gardens Kew, Ardingly, West Sussex, RH17 6TN, United Kingdom annaliese.mason@agrar.uni-giessen.de m.nelson@kew.org.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brassica (genetics)</term>
<term>Centromere (genetics)</term>
<term>Chromosome Mapping</term>
<term>Crosses, Genetic</term>
<term>DNA Transposable Elements</term>
<term>Genes, Plant</term>
<term>Genetic Markers</term>
<term>Genome, Plant</term>
<term>Genomics (methods)</term>
<term>Genotyping Techniques</term>
<term>Haplotypes</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Repetitive Sequences, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA Transposable Elements</term>
<term>Genetic Markers</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Brassica</term>
<term>Centromere</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Crosses, Genetic</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Genotyping Techniques</term>
<term>Haplotypes</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Repetitive Sequences, Nucleic Acid</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26614742</PMID>
<DateCreated>
<Year>2016</Year>
<Month>02</Month>
<Day>12</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>11</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1943-2631</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>202</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>513-23</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.115.183210</ELocationID>
<Abstract>
<AbstractText>Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate.</AbstractText>
<CopyrightInformation>Copyright © 2016 by the Genetics Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mason</LastName>
<ForeName>Annaliese S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, 35392 Giessen, Germany School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia annaliese.mason@agrar.uni-giessen.de m.nelson@kew.org.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rousseau-Gueutin</LastName>
<ForeName>Mathieu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morice</LastName>
<ForeName>Jérôme</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bayer</LastName>
<ForeName>Philipp E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Besharat</LastName>
<ForeName>Naghmeh</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cousin</LastName>
<ForeName>Anouska</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pradhan</LastName>
<ForeName>Aneeta</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parkin</LastName>
<ForeName>Isobel A P</ForeName>
<Initials>IA</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chèvre</LastName>
<ForeName>Anne-Marie</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Batley</LastName>
<ForeName>Jacqueline</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nelson</LastName>
<ForeName>Matthew N</ForeName>
<Initials>MN</Initials>
<AffiliationInfo>
<Affiliation>School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia Natural Capital and Plant Health, Royal Botanic Gardens Kew, Ardingly, West Sussex, RH17 6TN, United Kingdom annaliese.mason@agrar.uni-giessen.de m.nelson@kew.org.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004251">DNA Transposable Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2002 Jul;161(3):1225-34</RefSource>
<PMID Version="1">12136025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2003 Nov;165(3):1569-77</RefSource>
<PMID Version="1">14668403</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2013 Jul;10(7):671-5</RefSource>
<PMID Version="1">23666411</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 1998 Mar;96(3-4):361-6</RefSource>
<PMID Version="1">24710872</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome. 1995 Apr;38(2):313-9</RefSource>
<PMID Version="1">18470170</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10918-22</RefSource>
<PMID Version="1">8855283</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3238-43</RefSource>
<PMID Version="1">16492777</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2014 Aug 22;345(6199):950-3</RefSource>
<PMID Version="1">25146293</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genomics. 2011 Mar;97(3):173-85</RefSource>
<PMID Version="1">21159321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1999 Dec 24;286(5449):2468-74</RefSource>
<PMID Version="1">10617454</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2009 Sep;19(9):1639-45</RefSource>
<PMID Version="1">19541911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2010 Jan;11(1):31-46</RefSource>
<PMID Version="1">19997069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1263-71</RefSource>
<PMID Version="1">25733907</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome. 2008 Jan;51(1):1-10</RefSource>
<PMID Version="1">18356934</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2014 May;202(3):964-74</RefSource>
<PMID Version="1">24471809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2004 Nov;109(7):1346-52</RefSource>
<PMID Version="1">15365626</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chromosoma. 2011 Aug;120(4):353-65</RefSource>
<PMID Version="1">21394438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Plant Biol. 2011;11:103</RefSource>
<PMID Version="1">21663695</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Plant Biol. 2015;15:173</RefSource>
<PMID Version="1">26152188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Rep. 2004 Oct;23(4):196-202</RefSource>
<PMID Version="1">15480680</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Genet. 2004 Nov;20(11):529-33</RefSource>
<PMID Version="1">15475110</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Genet. 2015 Jan;31(1):5-10</RefSource>
<PMID Version="1">25445549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1995 Apr;139(4):1727-35</RefSource>
<PMID Version="1">7789773</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2011 Feb;122(3):543-53</RefSource>
<PMID Version="1">21046065</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2013 May;25(5):1541-54</RefSource>
<PMID Version="1">23653472</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Reprod. 2013 Jun;26(2):65-81</RefSource>
<PMID Version="1">23686220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2006 Nov;113(8):1467-80</RefSource>
<PMID Version="1">16983552</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2010;11(9):R94</RefSource>
<PMID Version="1">20875114</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cells. 2005 Jun 30;19(3):436-44</RefSource>
<PMID Version="1">15995362</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9842-7</RefSource>
<PMID Version="1">15998740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chromosoma. 2010 Oct;119(5):553-63</RefSource>
<PMID Version="1">20499078</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 May;198(3):670-84</RefSource>
<PMID Version="1">23421646</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anim Genet. 2012 Jun;43(3):290-7</RefSource>
<PMID Version="1">22486500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2014;15(6):R77</RefSource>
<PMID Version="1">24916971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Plant Biol. 2015;15:80</RefSource>
<PMID Version="1">25848689</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1990 Oct 5;215(3):403-10</RefSource>
<PMID Version="1">2231712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2000 Sep;124(1):7-16</RefSource>
<PMID Version="1">10982416</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2011 Jan;187(1):37-49</RefSource>
<PMID Version="1">21041557</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome. 1995 Dec;38(6):1122-31</RefSource>
<PMID Version="1">18470236</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1998 Sep;150(1):473-85</RefSource>
<PMID Version="1">9725862</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2009 Aug;119(3):497-505</RefSource>
<PMID Version="1">19436985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2004 May;167(1):243-52</RefSource>
<PMID Version="1">15166151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2007 Jan;49(2):173-83</RefSource>
<PMID Version="1">17156411</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2014 May;197(1):273-83</RefSource>
<PMID Version="1">24558262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Rep. 2009 May;28(5):831-5</RefSource>
<PMID Version="1">19219609</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2007 May;176(1):85-94</RefSource>
<PMID Version="1">17339217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2012 Dec;160(4):1808-26</RefSource>
<PMID Version="1">23096158</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>DNA Res. 2002 Aug 31;9(4):117-21</RefSource>
<PMID Version="1">12240833</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2007 Mar 15;446(7133):279-83</RefSource>
<PMID Version="1">17361174</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Heredity (Edinb). 2011 Oct;107(5):462-70</RefSource>
<PMID Version="1">21587302</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2011 Mar;62(5):1659-68</RefSource>
<PMID Version="1">21109579</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001937" MajorTopicYN="N">Brassica</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002503" MajorTopicYN="N">Centromere</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="Y">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004251" MajorTopicYN="N">DNA Transposable Elements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="Y">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060005" MajorTopicYN="N">Genotyping Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006239" MajorTopicYN="N">Haplotypes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012091" MajorTopicYN="N">Repetitive Sequences, Nucleic Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4788232 [Available on 02/01/17]</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Brassica</Keyword>
<Keyword MajorTopicYN="N">centromeres</Keyword>
<Keyword MajorTopicYN="N">molecular karyotyping</Keyword>
<Keyword MajorTopicYN="N">recombination</Keyword>
<Keyword MajorTopicYN="N">unreduced gametes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26614742</ArticleId>
<ArticleId IdType="pii">genetics.115.183210</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.115.183210</ArticleId>
<ArticleId IdType="pmc">PMC4788232</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002315 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002315 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26614742
   |texte=   Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26614742" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024