Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pliocene reversal of late Neogene aridification.

Identifieur interne : 002295 ( PubMed/Corpus ); précédent : 002294; suivant : 002296

Pliocene reversal of late Neogene aridification.

Auteurs : J M Kale Sniderman ; Jon D. Woodhead ; John Hellstrom ; Gregory J. Jordan ; Russell N. Drysdale ; Jonathan J. Tyler ; Nicholas Porch

Source :

RBID : pubmed:26858429

English descriptors

Abstract

The Pliocene epoch (5.3-2.6 Ma) represents the most recent geological interval in which global temperatures were several degrees warmer than today and is therefore considered our best analog for a future anthropogenic greenhouse world. However, our understanding of Pliocene climates is limited by poor age control on existing terrestrial climate archives, especially in the Southern Hemisphere, and by persistent disagreement between paleo-data and models concerning the magnitude of regional warming and/or wetting that occurred in response to increased greenhouse forcing. To address these problems, here we document the evolution of Southern Hemisphere hydroclimate from the latest Miocene to the middle Pliocene using radiometrically-dated fossil pollen records preserved in speleothems from semiarid southern Australia. These data reveal an abrupt onset of warm and wet climates early within the Pliocene, driving complete biome turnover. Pliocene warmth thus clearly represents a discrete interval which reversed a long-term trend of late Neogene cooling and aridification, rather than being simply the most recent period of greater-than-modern warmth within a continuously cooling trajectory. These findings demonstrate the importance of high-resolution chronologies to accompany paleoclimate data and also highlight the question of what initiated the sustained interval of Pliocene warmth.

DOI: 10.1073/pnas.1520188113
PubMed: 26858429

Links to Exploration step

pubmed:26858429

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pliocene reversal of late Neogene aridification.</title>
<author>
<name sortKey="Sniderman, J M Kale" sort="Sniderman, J M Kale" uniqKey="Sniderman J" first="J M Kale" last="Sniderman">J M Kale Sniderman</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia; kale.sniderman@unimelb.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Woodhead, Jon D" sort="Woodhead, Jon D" uniqKey="Woodhead J" first="Jon D" last="Woodhead">Jon D. Woodhead</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hellstrom, John" sort="Hellstrom, John" uniqKey="Hellstrom J" first="John" last="Hellstrom">John Hellstrom</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jordan, Gregory J" sort="Jordan, Gregory J" uniqKey="Jordan G" first="Gregory J" last="Jordan">Gregory J. Jordan</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drysdale, Russell N" sort="Drysdale, Russell N" uniqKey="Drysdale R" first="Russell N" last="Drysdale">Russell N. Drysdale</name>
<affiliation>
<nlm:affiliation>School of Geography, University of Melbourne, Parkville, VIC 3010, Australia; Environnements, Dynamiques et Territoires de la Montagne, UMR CNRS, Université de Savoie-Mont Blanc, 73376 Le Bourget du Lac, France;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tyler, Jonathan J" sort="Tyler, Jonathan J" uniqKey="Tyler J" first="Jonathan J" last="Tyler">Jonathan J. Tyler</name>
<affiliation>
<nlm:affiliation>Department of Earth Sciences, University of Adelaide, Adelaide, SA 5001, Australia;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Porch, Nicholas" sort="Porch, Nicholas" uniqKey="Porch N" first="Nicholas" last="Porch">Nicholas Porch</name>
<affiliation>
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26858429</idno>
<idno type="pmid">26858429</idno>
<idno type="doi">10.1073/pnas.1520188113</idno>
<idno type="wicri:Area/PubMed/Corpus">002295</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002295</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pliocene reversal of late Neogene aridification.</title>
<author>
<name sortKey="Sniderman, J M Kale" sort="Sniderman, J M Kale" uniqKey="Sniderman J" first="J M Kale" last="Sniderman">J M Kale Sniderman</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia; kale.sniderman@unimelb.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Woodhead, Jon D" sort="Woodhead, Jon D" uniqKey="Woodhead J" first="Jon D" last="Woodhead">Jon D. Woodhead</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hellstrom, John" sort="Hellstrom, John" uniqKey="Hellstrom J" first="John" last="Hellstrom">John Hellstrom</name>
<affiliation>
<nlm:affiliation>School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jordan, Gregory J" sort="Jordan, Gregory J" uniqKey="Jordan G" first="Gregory J" last="Jordan">Gregory J. Jordan</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drysdale, Russell N" sort="Drysdale, Russell N" uniqKey="Drysdale R" first="Russell N" last="Drysdale">Russell N. Drysdale</name>
<affiliation>
<nlm:affiliation>School of Geography, University of Melbourne, Parkville, VIC 3010, Australia; Environnements, Dynamiques et Territoires de la Montagne, UMR CNRS, Université de Savoie-Mont Blanc, 73376 Le Bourget du Lac, France;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tyler, Jonathan J" sort="Tyler, Jonathan J" uniqKey="Tyler J" first="Jonathan J" last="Tyler">Jonathan J. Tyler</name>
<affiliation>
<nlm:affiliation>Department of Earth Sciences, University of Adelaide, Adelaide, SA 5001, Australia;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Porch, Nicholas" sort="Porch, Nicholas" uniqKey="Porch N" first="Nicholas" last="Porch">Nicholas Porch</name>
<affiliation>
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Australia</term>
<term>Climate</term>
<term>Paleontology</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Australia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate</term>
<term>Paleontology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Pliocene epoch (5.3-2.6 Ma) represents the most recent geological interval in which global temperatures were several degrees warmer than today and is therefore considered our best analog for a future anthropogenic greenhouse world. However, our understanding of Pliocene climates is limited by poor age control on existing terrestrial climate archives, especially in the Southern Hemisphere, and by persistent disagreement between paleo-data and models concerning the magnitude of regional warming and/or wetting that occurred in response to increased greenhouse forcing. To address these problems, here we document the evolution of Southern Hemisphere hydroclimate from the latest Miocene to the middle Pliocene using radiometrically-dated fossil pollen records preserved in speleothems from semiarid southern Australia. These data reveal an abrupt onset of warm and wet climates early within the Pliocene, driving complete biome turnover. Pliocene warmth thus clearly represents a discrete interval which reversed a long-term trend of late Neogene cooling and aridification, rather than being simply the most recent period of greater-than-modern warmth within a continuously cooling trajectory. These findings demonstrate the importance of high-resolution chronologies to accompany paleoclimate data and also highlight the question of what initiated the sustained interval of Pliocene warmth.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26858429</PMID>
<DateCreated>
<Year>2016</Year>
<Month>02</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>113</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Pliocene reversal of late Neogene aridification.</ArticleTitle>
<Pagination>
<MedlinePgn>1999-2004</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1520188113</ELocationID>
<Abstract>
<AbstractText>The Pliocene epoch (5.3-2.6 Ma) represents the most recent geological interval in which global temperatures were several degrees warmer than today and is therefore considered our best analog for a future anthropogenic greenhouse world. However, our understanding of Pliocene climates is limited by poor age control on existing terrestrial climate archives, especially in the Southern Hemisphere, and by persistent disagreement between paleo-data and models concerning the magnitude of regional warming and/or wetting that occurred in response to increased greenhouse forcing. To address these problems, here we document the evolution of Southern Hemisphere hydroclimate from the latest Miocene to the middle Pliocene using radiometrically-dated fossil pollen records preserved in speleothems from semiarid southern Australia. These data reveal an abrupt onset of warm and wet climates early within the Pliocene, driving complete biome turnover. Pliocene warmth thus clearly represents a discrete interval which reversed a long-term trend of late Neogene cooling and aridification, rather than being simply the most recent period of greater-than-modern warmth within a continuously cooling trajectory. These findings demonstrate the importance of high-resolution chronologies to accompany paleoclimate data and also highlight the question of what initiated the sustained interval of Pliocene warmth.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sniderman</LastName>
<ForeName>J M Kale</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia; kale.sniderman@unimelb.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Woodhead</LastName>
<ForeName>Jon D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hellstrom</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-9427-3525</Identifier>
<AffiliationInfo>
<Affiliation>School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jordan</LastName>
<ForeName>Gregory J</ForeName>
<Initials>GJ</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Drysdale</LastName>
<ForeName>Russell N</ForeName>
<Initials>RN</Initials>
<AffiliationInfo>
<Affiliation>School of Geography, University of Melbourne, Parkville, VIC 3010, Australia; Environnements, Dynamiques et Territoires de la Montagne, UMR CNRS, Université de Savoie-Mont Blanc, 73376 Le Bourget du Lac, France;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tyler</LastName>
<ForeName>Jonathan J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Earth Sciences, University of Adelaide, Adelaide, SA 5001, Australia;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Porch</LastName>
<ForeName>Nicholas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1999 Aug 6;285(5429):876-9</RefSource>
<PMID Version="1">10436153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans A Math Phys Eng Sci. 2013 Sep 16;371(2001):20120515</RefSource>
<PMID Version="1">24043865</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2013 Apr 4;496(7443):43-9</RefSource>
<PMID Version="1">23552943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6423-8</RefSource>
<PMID Version="1">22496594</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Hum Evol. 2010 Jul;59(1):70-86</RefSource>
<PMID Version="1">20605190</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans A Math Phys Eng Sci. 2013 Sep 16;371(2001):20120524</RefSource>
<PMID Version="1">24043866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2001 May 10;411(6834):157-62</RefSource>
<PMID Version="1">11346785</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Mar 27;323(5922):1714-8</RefSource>
<PMID Version="1">19251592</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2001 Apr 27;292(5517):686-93</RefSource>
<PMID Version="1">11326091</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans A Math Phys Eng Sci. 2013 Oct 28;371(2001):20130096</RefSource>
<PMID Version="1">24043869</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Jun 7;486(7401):97-100</RefSource>
<PMID Version="1">22678287</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Jan 17;451(7176):279-83</RefSource>
<PMID Version="1">18202643</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001315" MajorTopicYN="N" Type="Geographic">Australia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="Y">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010163" MajorTopicYN="N">Paleontology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4776468</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Neogene</Keyword>
<Keyword MajorTopicYN="N">aridification</Keyword>
<Keyword MajorTopicYN="N">paleoclimate</Keyword>
<Keyword MajorTopicYN="N">pollen</Keyword>
<Keyword MajorTopicYN="N">speleothems</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26858429</ArticleId>
<ArticleId IdType="pii">1520188113</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1520188113</ArticleId>
<ArticleId IdType="pmc">PMC4776468</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002295 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002295 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26858429
   |texte=   Pliocene reversal of late Neogene aridification.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26858429" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024