Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors.

Identifieur interne : 002079 ( PubMed/Corpus ); précédent : 002078; suivant : 002080

Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors.

Auteurs : Cassy M. Spiller ; Ad J M. Gillis ; Guillaume Burnet ; Hans Stoop ; Peter Koopman ; Josephine Bowles ; Leendert H J. Looijenga

Source :

RBID : pubmed:26654129

English descriptors

Abstract

Type II germ cell tumors arise after puberty from a germ cell that was incorrectly programmed during fetal life. Failure of testicular germ cells to properly differentiate can lead to the formation of germ cell neoplasia in situ of the testis; this precursor cell invariably gives rise to germ cell cancer after puberty. The Nodal co-receptor Cripto is expressed transiently during normal germ cell development and is ectopically expressed in non-seminomas that arise from germ cell neoplasia in situ, suggesting that its aberrant expression may underlie germ cell dysregulation and hence germ cell cancer. Here we investigated methylation of the Cripto promoter in mouse germ cells and human germ cell cancer and correlated this with the level of CRIPTO protein expression. We found hypomethylation of the CRIPTO promoter in undifferentiated fetal germ cells, embryonal carcinoma and seminomas, but hypermethylation in differentiated fetal germ cells and the differentiated types of non-seminomas. CRIPTO protein was strongly expressed in germ cell neoplasia in situ along with embryonal carcinoma, yolk sac tumor and seminomas. Further, cleaved CRIPTO was detected in media from seminoma and embryonal carcinoma cell lines, suggesting that cleaved CRIPTO may provide diagnostic indication of germ cell cancer. Accordingly, CRIPTO was detectable in serum from 6/15 patients with embryonal carcinoma, 5/15 patients with seminoma, 4/5 patients with germ cell neoplasia in situ cells only and in 1/15 control patients. These findings suggest that CRIPTO expression may be a useful serological marker for diagnostic and/or prognostic purposes during germ cell cancer management.

DOI: 10.1016/j.molonc.2015.11.003
PubMed: 26654129

Links to Exploration step

pubmed:26654129

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors.</title>
<author>
<name sortKey="Spiller, Cassy M" sort="Spiller, Cassy M" uniqKey="Spiller C" first="Cassy M" last="Spiller">Cassy M. Spiller</name>
<affiliation>
<nlm:affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gillis, Ad J M" sort="Gillis, Ad J M" uniqKey="Gillis A" first="Ad J M" last="Gillis">Ad J M. Gillis</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burnet, Guillaume" sort="Burnet, Guillaume" uniqKey="Burnet G" first="Guillaume" last="Burnet">Guillaume Burnet</name>
<affiliation>
<nlm:affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Departement de Biologie, Ecole Normale Superieure de Cachan, Cachan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stoop, Hans" sort="Stoop, Hans" uniqKey="Stoop H" first="Hans" last="Stoop">Hans Stoop</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koopman, Peter" sort="Koopman, Peter" uniqKey="Koopman P" first="Peter" last="Koopman">Peter Koopman</name>
<affiliation>
<nlm:affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bowles, Josephine" sort="Bowles, Josephine" uniqKey="Bowles J" first="Josephine" last="Bowles">Josephine Bowles</name>
<affiliation>
<nlm:affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Looijenga, Leendert H J" sort="Looijenga, Leendert H J" uniqKey="Looijenga L" first="Leendert H J" last="Looijenga">Leendert H J. Looijenga</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands. Electronic address: l.looijenga@erasmusmc.nl.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26654129</idno>
<idno type="pmid">26654129</idno>
<idno type="doi">10.1016/j.molonc.2015.11.003</idno>
<idno type="wicri:Area/PubMed/Corpus">002079</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002079</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors.</title>
<author>
<name sortKey="Spiller, Cassy M" sort="Spiller, Cassy M" uniqKey="Spiller C" first="Cassy M" last="Spiller">Cassy M. Spiller</name>
<affiliation>
<nlm:affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gillis, Ad J M" sort="Gillis, Ad J M" uniqKey="Gillis A" first="Ad J M" last="Gillis">Ad J M. Gillis</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burnet, Guillaume" sort="Burnet, Guillaume" uniqKey="Burnet G" first="Guillaume" last="Burnet">Guillaume Burnet</name>
<affiliation>
<nlm:affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Departement de Biologie, Ecole Normale Superieure de Cachan, Cachan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stoop, Hans" sort="Stoop, Hans" uniqKey="Stoop H" first="Hans" last="Stoop">Hans Stoop</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koopman, Peter" sort="Koopman, Peter" uniqKey="Koopman P" first="Peter" last="Koopman">Peter Koopman</name>
<affiliation>
<nlm:affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bowles, Josephine" sort="Bowles, Josephine" uniqKey="Bowles J" first="Josephine" last="Bowles">Josephine Bowles</name>
<affiliation>
<nlm:affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Looijenga, Leendert H J" sort="Looijenga, Leendert H J" uniqKey="Looijenga L" first="Leendert H J" last="Looijenga">Leendert H J. Looijenga</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands. Electronic address: l.looijenga@erasmusmc.nl.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular oncology</title>
<idno type="eISSN">1878-0261</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Carcinoma, Embryonal (blood)</term>
<term>Carcinoma, Embryonal (diagnosis)</term>
<term>Carcinoma, Embryonal (genetics)</term>
<term>Epidermal Growth Factor (biosynthesis)</term>
<term>Epidermal Growth Factor (genetics)</term>
<term>Epigenesis, Genetic</term>
<term>GPI-Linked Proteins (biosynthesis)</term>
<term>GPI-Linked Proteins (genetics)</term>
<term>Gene Expression Regulation, Neoplastic</term>
<term>Humans</term>
<term>Intercellular Signaling Peptides and Proteins (biosynthesis)</term>
<term>Intercellular Signaling Peptides and Proteins (genetics)</term>
<term>Male</term>
<term>Membrane Glycoproteins (biosynthesis)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
<term>Neoplasm Proteins (biosynthesis)</term>
<term>Neoplasm Proteins (genetics)</term>
<term>Testicular Neoplasms (blood)</term>
<term>Testicular Neoplasms (diagnosis)</term>
<term>Testicular Neoplasms (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Epidermal Growth Factor</term>
<term>GPI-Linked Proteins</term>
<term>Intercellular Signaling Peptides and Proteins</term>
<term>Membrane Glycoproteins</term>
<term>Neoplasm Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="blood" xml:lang="en">
<term>Carcinoma, Embryonal</term>
<term>Testicular Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Carcinoma, Embryonal</term>
<term>Testicular Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Carcinoma, Embryonal</term>
<term>Epidermal Growth Factor</term>
<term>GPI-Linked Proteins</term>
<term>Intercellular Signaling Peptides and Proteins</term>
<term>Membrane Glycoproteins</term>
<term>Neoplasm Proteins</term>
<term>Testicular Neoplasms</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Epigenesis, Genetic</term>
<term>Gene Expression Regulation, Neoplastic</term>
<term>Humans</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Type II germ cell tumors arise after puberty from a germ cell that was incorrectly programmed during fetal life. Failure of testicular germ cells to properly differentiate can lead to the formation of germ cell neoplasia in situ of the testis; this precursor cell invariably gives rise to germ cell cancer after puberty. The Nodal co-receptor Cripto is expressed transiently during normal germ cell development and is ectopically expressed in non-seminomas that arise from germ cell neoplasia in situ, suggesting that its aberrant expression may underlie germ cell dysregulation and hence germ cell cancer. Here we investigated methylation of the Cripto promoter in mouse germ cells and human germ cell cancer and correlated this with the level of CRIPTO protein expression. We found hypomethylation of the CRIPTO promoter in undifferentiated fetal germ cells, embryonal carcinoma and seminomas, but hypermethylation in differentiated fetal germ cells and the differentiated types of non-seminomas. CRIPTO protein was strongly expressed in germ cell neoplasia in situ along with embryonal carcinoma, yolk sac tumor and seminomas. Further, cleaved CRIPTO was detected in media from seminoma and embryonal carcinoma cell lines, suggesting that cleaved CRIPTO may provide diagnostic indication of germ cell cancer. Accordingly, CRIPTO was detectable in serum from 6/15 patients with embryonal carcinoma, 5/15 patients with seminoma, 4/5 patients with germ cell neoplasia in situ cells only and in 1/15 control patients. These findings suggest that CRIPTO expression may be a useful serological marker for diagnostic and/or prognostic purposes during germ cell cancer management.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26654129</PMID>
<DateCreated>
<Year>2016</Year>
<Month>04</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>08</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1878-0261</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Molecular oncology</Title>
<ISOAbbreviation>Mol Oncol</ISOAbbreviation>
</Journal>
<ArticleTitle>Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors.</ArticleTitle>
<Pagination>
<MedlinePgn>526-37</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.molonc.2015.11.003</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1574-7891(15)00202-1</ELocationID>
<Abstract>
<AbstractText>Type II germ cell tumors arise after puberty from a germ cell that was incorrectly programmed during fetal life. Failure of testicular germ cells to properly differentiate can lead to the formation of germ cell neoplasia in situ of the testis; this precursor cell invariably gives rise to germ cell cancer after puberty. The Nodal co-receptor Cripto is expressed transiently during normal germ cell development and is ectopically expressed in non-seminomas that arise from germ cell neoplasia in situ, suggesting that its aberrant expression may underlie germ cell dysregulation and hence germ cell cancer. Here we investigated methylation of the Cripto promoter in mouse germ cells and human germ cell cancer and correlated this with the level of CRIPTO protein expression. We found hypomethylation of the CRIPTO promoter in undifferentiated fetal germ cells, embryonal carcinoma and seminomas, but hypermethylation in differentiated fetal germ cells and the differentiated types of non-seminomas. CRIPTO protein was strongly expressed in germ cell neoplasia in situ along with embryonal carcinoma, yolk sac tumor and seminomas. Further, cleaved CRIPTO was detected in media from seminoma and embryonal carcinoma cell lines, suggesting that cleaved CRIPTO may provide diagnostic indication of germ cell cancer. Accordingly, CRIPTO was detectable in serum from 6/15 patients with embryonal carcinoma, 5/15 patients with seminoma, 4/5 patients with germ cell neoplasia in situ cells only and in 1/15 control patients. These findings suggest that CRIPTO expression may be a useful serological marker for diagnostic and/or prognostic purposes during germ cell cancer management.</AbstractText>
<CopyrightInformation>Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Spiller</LastName>
<ForeName>Cassy M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gillis</LastName>
<ForeName>Ad J M</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burnet</LastName>
<ForeName>Guillaume</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Departement de Biologie, Ecole Normale Superieure de Cachan, Cachan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stoop</LastName>
<ForeName>Hans</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koopman</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bowles</LastName>
<ForeName>Josephine</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Looijenga</LastName>
<ForeName>Leendert H J</ForeName>
<Initials>LH</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, 3015, The Netherlands. Electronic address: l.looijenga@erasmusmc.nl.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016430">Clinical Trial</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Oncol</MedlineTA>
<NlmUniqueID>101308230</NlmUniqueID>
<ISSNLinking>1574-7891</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058851">GPI-Linked Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D036341">Intercellular Signaling Peptides and Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009363">Neoplasm Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C070636">TDGF1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C489450">Tdgf1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>62229-50-9</RegistryNumber>
<NameOfSubstance UI="D004815">Epidermal Growth Factor</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2007 Dec 7;282(49):35772-86</RefSource>
<PMID Version="1">17925387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stem Cells. 2010 Aug;28(8):1303-14</RefSource>
<PMID Version="1">20549704</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2000 Oct;157(4):1155-66</RefSource>
<PMID Version="1">11021820</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Physiol. 2013 Jun;228(6):1174-88</RefSource>
<PMID Version="1">23129342</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Androl. 2007 Aug;30(4):350-65</RefSource>
<PMID Version="1">17705808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2010 Aug;24(8):3026-35</RefSource>
<PMID Version="1">20395456</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Br J Cancer. 2010 Oct 12;103(8):1269-76</RefSource>
<PMID Version="1">20823885</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2884-8</RefSource>
<PMID Version="1">8610136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sex Dev. 2013;7(4):207-11</RefSource>
<PMID Version="1">23571295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2004 Apr 15;268(2):403-15</RefSource>
<PMID Version="1">15063176</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2002 May 30;21(24):3909-16</RefSource>
<PMID Version="1">12032829</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Pathol. 2014 Jul;24(4):360-70</RefSource>
<PMID Version="1">24521322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pathol. 2010 Aug;221(4):433-42</RefSource>
<PMID Version="1">20593487</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tumour Biol. 2001 Sep-Oct;22(5):286-93</RefSource>
<PMID Version="1">11553858</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(12):e53003</RefSource>
<PMID Version="1">23300844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Androl. 1987 Feb;10(1):19-28</RefSource>
<PMID Version="1">3034791</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2006 Jan 15;66(2):820-7</RefSource>
<PMID Version="1">16424014</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Dev Biol. 2013;57(2-4):211-9</RefSource>
<PMID Version="1">23784832</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2003 Oct 23;22(48):7695-701</RefSource>
<PMID Version="1">14576833</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mech Dev. 2002 Jul;115(1-2):157-60</RefSource>
<PMID Version="1">12049782</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mod Pathol. 2008 Nov;21(11):1337-44</RefSource>
<PMID Version="1">18622385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2012 Nov;139(22):4123-32</RefSource>
<PMID Version="1">23034635</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2009 Jun 15;69(12):5241-50</RefSource>
<PMID Version="1">19491264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Biosci. 2001 May 01;6:D685-707</RefSource>
<PMID Version="1">11333208</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2003 Oct 1;262(1):1-15</RefSource>
<PMID Version="1">14512014</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Oncol. 2016 Apr;10 (4):526-37</RefSource>
<PMID Version="1">26654129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Semin Cancer Biol. 2014 Dec;29:51-8</RefSource>
<PMID Version="1">25153355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Cancer. 2013 Jun 27;13:313</RefSource>
<PMID Version="1">23806198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2000 Nov 30;19(51):5858-62</RefSource>
<PMID Version="1">11127816</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2010 Aug;177(2):532-40</RefSource>
<PMID Version="1">20616345</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Birth Defects Res C Embryo Today. 2009 Mar;87(1):96-113</RefSource>
<PMID Version="1">19306344</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Cancer. 2005 Mar;5(3):210-22</RefSource>
<PMID Version="1">15738984</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Cancer. 1994 Oct 1;59(1):33-8</RefSource>
<PMID Version="1">7927900</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mod Pathol. 2009 Aug;22(8):1066-74</RefSource>
<PMID Version="1">19396148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2003 Nov 15;63(22):7674-8</RefSource>
<PMID Version="1">14633689</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2007 Mar;134(6):1023-34</RefSource>
<PMID Version="1">17287255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2007 Oct 26;282(43):31643-55</RefSource>
<PMID Version="1">17720976</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Cancer Res. 2006 Sep 1;12(17):5158-64</RefSource>
<PMID Version="1">16951234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Sci. 2009 Apr;100(4):698-708</RefSource>
<PMID Version="1">19245437</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stem Cells. 2005 Feb;23(2):166-85</RefSource>
<PMID Version="1">15671141</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Br J Cancer. 2005 May 23;92(10):1934-41</RefSource>
<PMID Version="1">15856041</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018236" MajorTopicYN="Y">Carcinoma, Embryonal</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004815" MajorTopicYN="Y">Epidermal Growth Factor</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044127" MajorTopicYN="Y">Epigenesis, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058851" MajorTopicYN="Y">GPI-Linked Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015972" MajorTopicYN="Y">Gene Expression Regulation, Neoplastic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036341" MajorTopicYN="Y">Intercellular Signaling Peptides and Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="Y">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009363" MajorTopicYN="Y">Neoplasm Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013736" MajorTopicYN="Y">Testicular Neoplasms</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cripto</Keyword>
<Keyword MajorTopicYN="N">Diagnostic</Keyword>
<Keyword MajorTopicYN="N">Methylation</Keyword>
<Keyword MajorTopicYN="N">Testicular germ cell cancer</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>11</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26654129</ArticleId>
<ArticleId IdType="pii">S1574-7891(15)00202-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.molonc.2015.11.003</ArticleId>
<ArticleId IdType="pmc">PMC5423140</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002079 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002079 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26654129
   |texte=   Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26654129" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024