Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides.

Identifieur interne : 001F78 ( PubMed/Corpus ); précédent : 001F77; suivant : 001F79

Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides.

Auteurs : Chad Husko ; Matthias Wulf ; Simon Lefrancois ; Sylvain Combrié ; Gaëlle Lehoucq ; Alfredo De Rossi ; Benjamin J. Eggleton ; L. Kuipers

Source :

RBID : pubmed:27079683

Abstract

Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.

DOI: 10.1038/ncomms11332
PubMed: 27079683

Links to Exploration step

pubmed:27079683

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides.</title>
<author>
<name sortKey="Husko, Chad" sort="Husko, Chad" uniqKey="Husko C" first="Chad" last="Husko">Chad Husko</name>
<affiliation>
<nlm:affiliation>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wulf, Matthias" sort="Wulf, Matthias" uniqKey="Wulf M" first="Matthias" last="Wulf">Matthias Wulf</name>
<affiliation>
<nlm:affiliation>Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lefrancois, Simon" sort="Lefrancois, Simon" uniqKey="Lefrancois S" first="Simon" last="Lefrancois">Simon Lefrancois</name>
<affiliation>
<nlm:affiliation>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Combrie, Sylvain" sort="Combrie, Sylvain" uniqKey="Combrie S" first="Sylvain" last="Combrié">Sylvain Combrié</name>
<affiliation>
<nlm:affiliation>Thales Research and Technology, 1 Avenue. A. Fresnel, 91767 Palaiseau, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lehoucq, Gaelle" sort="Lehoucq, Gaelle" uniqKey="Lehoucq G" first="Gaëlle" last="Lehoucq">Gaëlle Lehoucq</name>
<affiliation>
<nlm:affiliation>Thales Research and Technology, 1 Avenue. A. Fresnel, 91767 Palaiseau, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Rossi, Alfredo" sort="De Rossi, Alfredo" uniqKey="De Rossi A" first="Alfredo" last="De Rossi">Alfredo De Rossi</name>
<affiliation>
<nlm:affiliation>Thales Research and Technology, 1 Avenue. A. Fresnel, 91767 Palaiseau, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eggleton, Benjamin J" sort="Eggleton, Benjamin J" uniqKey="Eggleton B" first="Benjamin J" last="Eggleton">Benjamin J. Eggleton</name>
<affiliation>
<nlm:affiliation>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuipers, L" sort="Kuipers, L" uniqKey="Kuipers L" first="L" last="Kuipers">L. Kuipers</name>
<affiliation>
<nlm:affiliation>Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27079683</idno>
<idno type="pmid">27079683</idno>
<idno type="doi">10.1038/ncomms11332</idno>
<idno type="wicri:Area/PubMed/Corpus">001F78</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F78</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides.</title>
<author>
<name sortKey="Husko, Chad" sort="Husko, Chad" uniqKey="Husko C" first="Chad" last="Husko">Chad Husko</name>
<affiliation>
<nlm:affiliation>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wulf, Matthias" sort="Wulf, Matthias" uniqKey="Wulf M" first="Matthias" last="Wulf">Matthias Wulf</name>
<affiliation>
<nlm:affiliation>Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lefrancois, Simon" sort="Lefrancois, Simon" uniqKey="Lefrancois S" first="Simon" last="Lefrancois">Simon Lefrancois</name>
<affiliation>
<nlm:affiliation>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Combrie, Sylvain" sort="Combrie, Sylvain" uniqKey="Combrie S" first="Sylvain" last="Combrié">Sylvain Combrié</name>
<affiliation>
<nlm:affiliation>Thales Research and Technology, 1 Avenue. A. Fresnel, 91767 Palaiseau, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lehoucq, Gaelle" sort="Lehoucq, Gaelle" uniqKey="Lehoucq G" first="Gaëlle" last="Lehoucq">Gaëlle Lehoucq</name>
<affiliation>
<nlm:affiliation>Thales Research and Technology, 1 Avenue. A. Fresnel, 91767 Palaiseau, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Rossi, Alfredo" sort="De Rossi, Alfredo" uniqKey="De Rossi A" first="Alfredo" last="De Rossi">Alfredo De Rossi</name>
<affiliation>
<nlm:affiliation>Thales Research and Technology, 1 Avenue. A. Fresnel, 91767 Palaiseau, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eggleton, Benjamin J" sort="Eggleton, Benjamin J" uniqKey="Eggleton B" first="Benjamin J" last="Eggleton">Benjamin J. Eggleton</name>
<affiliation>
<nlm:affiliation>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuipers, L" sort="Kuipers, L" uniqKey="Kuipers L" first="L" last="Kuipers">L. Kuipers</name>
<affiliation>
<nlm:affiliation>Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27079683</PMID>
<DateCreated>
<Year>2016</Year>
<Month>04</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides.</ArticleTitle>
<Pagination>
<MedlinePgn>11332</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ncomms11332</ELocationID>
<Abstract>
<AbstractText>Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Husko</LastName>
<ForeName>Chad</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wulf</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lefrancois</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Combrié</LastName>
<ForeName>Sylvain</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Thales Research and Technology, 1 Avenue. A. Fresnel, 91767 Palaiseau, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lehoucq</LastName>
<ForeName>Gaëlle</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Thales Research and Technology, 1 Avenue. A. Fresnel, 91767 Palaiseau, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Rossi</LastName>
<ForeName>Alfredo</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Thales Research and Technology, 1 Avenue. A. Fresnel, 91767 Palaiseau, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eggleton</LastName>
<ForeName>Benjamin J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuipers</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Lett. 1999 Jul 1;24(13):881-3</RefSource>
<PMID Version="1">18073883</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Lett. 1986 Oct 1;11(10):662-4</RefSource>
<PMID Version="1">19738721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2001 Nov 2;294(5544):1080-2</RefSource>
<PMID Version="1">11691986</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2010 Jan 18;18(2):923-30</RefSource>
<PMID Version="1">20173914</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2005 Feb 25;94(7):073903</RefSource>
<PMID Version="1">15783818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2007 Dec 10;15(25):16604-44</RefSource>
<PMID Version="1">19550949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Lett. 1988 May 1;13(5):392</RefSource>
<PMID Version="1">19745909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2014;5:3160</RefSource>
<PMID Version="1">24423977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 2):026604</RefSource>
<PMID Version="1">14525130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2004 Oct 22;93(17):173902</RefSource>
<PMID Version="1">15525078</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Lett. 2014 Aug 1;39(15):4518-21</RefSource>
<PMID Version="1">25078217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2002 Apr 29;88(17):173901</RefSource>
<PMID Version="1">12005754</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2011 Nov 11;107(20):203902</RefSource>
<PMID Version="1">22181733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2006 Feb 20;14(4):1658-72</RefSource>
<PMID Version="1">19503493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Lett. 2000 Jan 1;25(1):25-7</RefSource>
<PMID Version="1">18059770</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Lett. 2002;27(20):1800-2</RefSource>
<PMID Version="1">18033368</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2010 Dec 6;18(25):26625-30</RefSource>
<PMID Version="1">21165011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2004 Jul 16;93(3):037401</RefSource>
<PMID Version="1">15323866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2009 Feb 16;17(4):2944-53</RefSource>
<PMID Version="1">19219198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Lett. 2008 Apr 1;33(7):660-2</RefSource>
<PMID Version="1">18382509</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Lett. 1986 Jul 1;11(7):464-6</RefSource>
<PMID Version="1">19730665</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 1991 Dec 16;67(25):3523-3526</RefSource>
<PMID Version="1">10044757</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056604</RefSource>
<PMID Version="1">11736113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Lett. 2014 Jun 15;39(12):3623-6</RefSource>
<PMID Version="1">24978552</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2007 Nov 12;15(23):15242-9</RefSource>
<PMID Version="1">19550808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2012 Jun 4;20(12):13108-14</RefSource>
<PMID Version="1">22714338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2005 Jan 28;94(3):033903</RefSource>
<PMID Version="1">15698268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nano Lett. 2013;13(12):5858-65</RefSource>
<PMID Version="1">24206579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Lett. 2007 Feb 15;32(4):391-3</RefSource>
<PMID Version="1">17356663</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4835551</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>03</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27079683</ArticleId>
<ArticleId IdType="pii">ncomms11332</ArticleId>
<ArticleId IdType="doi">10.1038/ncomms11332</ArticleId>
<ArticleId IdType="pmc">PMC4835551</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F78 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001F78 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27079683
   |texte=   Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27079683" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024