Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya.

Identifieur interne : 001D96 ( PubMed/Corpus ); précédent : 001D95; suivant : 001D97

Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya.

Auteurs : Antonio Emidio Fortunato ; Paolo Sordino ; Nikos Andreakis

Source :

RBID : pubmed:27209522

English descriptors

Abstract

SOUL homologs constitute a heme-binding protein superfamily putatively involved in heme and tetrapyrrole metabolisms associated with a number of physiological processes. Despite their omnipresence across the tree of life and the biochemical characterization of many SOUL members, their functional role and the evolutionary events leading to such remarkable protein repertoire still remain cryptic. To explore SOUL evolution, we apply a computational phylogenetic approach, including a relevant number of SOUL homologs, to identify paralog forms and reconstruct their genealogy across the tree of life and within species. In animal lineages, multiple gene duplication or loss events and paralog functional specializations underlie SOUL evolution from the dawn of ancestral echinoderm and mollusc SOUL forms. In photosynthetic organisms, SOUL evolution is linked to the endosymbiosis events leading to plastid acquisition in eukaryotes. Derivative features, such as the F2L peptide and BH3 domain, evolved in vertebrates and provided innovative functionality to support immune response and apoptosis. The evolution of elements such as the N-terminal protein domain DUF2358, the His42 residue, or the tetrapyrrole heme-binding site is modern, and their functional implications still unresolved. This study represents the first in-depth analysis of SOUL protein evolution and provides novel insights in the understanding of their obscure physiological role.

DOI: 10.1007/s00239-016-9745-9
PubMed: 27209522

Links to Exploration step

pubmed:27209522

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya.</title>
<author>
<name sortKey="Fortunato, Antonio Emidio" sort="Fortunato, Antonio Emidio" uniqKey="Fortunato A" first="Antonio Emidio" last="Fortunato">Antonio Emidio Fortunato</name>
<affiliation>
<nlm:affiliation>Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative UMR 7238, 15 rue de l'Ecole de Médecine, 75006, Paris, France. antonio.fortunato@upmc.fr.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sordino, Paolo" sort="Sordino, Paolo" uniqKey="Sordino P" first="Paolo" last="Sordino">Paolo Sordino</name>
<affiliation>
<nlm:affiliation>Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Andreakis, Nikos" sort="Andreakis, Nikos" uniqKey="Andreakis N" first="Nikos" last="Andreakis">Nikos Andreakis</name>
<affiliation>
<nlm:affiliation>Australian Institute of Marine Science, PMB N° 3, Townsville MC, QLD, 4810, Australia. n.andreakis@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27209522</idno>
<idno type="pmid">27209522</idno>
<idno type="doi">10.1007/s00239-016-9745-9</idno>
<idno type="wicri:Area/PubMed/Corpus">001D96</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya.</title>
<author>
<name sortKey="Fortunato, Antonio Emidio" sort="Fortunato, Antonio Emidio" uniqKey="Fortunato A" first="Antonio Emidio" last="Fortunato">Antonio Emidio Fortunato</name>
<affiliation>
<nlm:affiliation>Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative UMR 7238, 15 rue de l'Ecole de Médecine, 75006, Paris, France. antonio.fortunato@upmc.fr.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sordino, Paolo" sort="Sordino, Paolo" uniqKey="Sordino P" first="Paolo" last="Sordino">Paolo Sordino</name>
<affiliation>
<nlm:affiliation>Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Andreakis, Nikos" sort="Andreakis, Nikos" uniqKey="Andreakis N" first="Nikos" last="Andreakis">Nikos Andreakis</name>
<affiliation>
<nlm:affiliation>Australian Institute of Marine Science, PMB N° 3, Townsville MC, QLD, 4810, Australia. n.andreakis@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of molecular evolution</title>
<idno type="eISSN">1432-1432</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Evolution</term>
<term>Carrier Proteins (genetics)</term>
<term>Databases, Genetic</term>
<term>Eukaryota (genetics)</term>
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Hemeproteins (genetics)</term>
<term>Phylogeny</term>
<term>Sequence Alignment (methods)</term>
<term>Symbiosis (genetics)</term>
<term>Tetrapyrroles (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carrier Proteins</term>
<term>Hemeproteins</term>
<term>Tetrapyrroles</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Eukaryota</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Evolution</term>
<term>Databases, Genetic</term>
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Phylogeny</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">SOUL homologs constitute a heme-binding protein superfamily putatively involved in heme and tetrapyrrole metabolisms associated with a number of physiological processes. Despite their omnipresence across the tree of life and the biochemical characterization of many SOUL members, their functional role and the evolutionary events leading to such remarkable protein repertoire still remain cryptic. To explore SOUL evolution, we apply a computational phylogenetic approach, including a relevant number of SOUL homologs, to identify paralog forms and reconstruct their genealogy across the tree of life and within species. In animal lineages, multiple gene duplication or loss events and paralog functional specializations underlie SOUL evolution from the dawn of ancestral echinoderm and mollusc SOUL forms. In photosynthetic organisms, SOUL evolution is linked to the endosymbiosis events leading to plastid acquisition in eukaryotes. Derivative features, such as the F2L peptide and BH3 domain, evolved in vertebrates and provided innovative functionality to support immune response and apoptosis. The evolution of elements such as the N-terminal protein domain DUF2358, the His42 residue, or the tetrapyrrole heme-binding site is modern, and their functional implications still unresolved. This study represents the first in-depth analysis of SOUL protein evolution and provides novel insights in the understanding of their obscure physiological role.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27209522</PMID>
<DateCreated>
<Year>2016</Year>
<Month>06</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1432</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>82</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of molecular evolution</Title>
<ISOAbbreviation>J. Mol. Evol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya.</ArticleTitle>
<Pagination>
<MedlinePgn>279-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00239-016-9745-9</ELocationID>
<Abstract>
<AbstractText>SOUL homologs constitute a heme-binding protein superfamily putatively involved in heme and tetrapyrrole metabolisms associated with a number of physiological processes. Despite their omnipresence across the tree of life and the biochemical characterization of many SOUL members, their functional role and the evolutionary events leading to such remarkable protein repertoire still remain cryptic. To explore SOUL evolution, we apply a computational phylogenetic approach, including a relevant number of SOUL homologs, to identify paralog forms and reconstruct their genealogy across the tree of life and within species. In animal lineages, multiple gene duplication or loss events and paralog functional specializations underlie SOUL evolution from the dawn of ancestral echinoderm and mollusc SOUL forms. In photosynthetic organisms, SOUL evolution is linked to the endosymbiosis events leading to plastid acquisition in eukaryotes. Derivative features, such as the F2L peptide and BH3 domain, evolved in vertebrates and provided innovative functionality to support immune response and apoptosis. The evolution of elements such as the N-terminal protein domain DUF2358, the His42 residue, or the tetrapyrrole heme-binding site is modern, and their functional implications still unresolved. This study represents the first in-depth analysis of SOUL protein evolution and provides novel insights in the understanding of their obscure physiological role.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fortunato</LastName>
<ForeName>Antonio Emidio</ForeName>
<Initials>AE</Initials>
<AffiliationInfo>
<Affiliation>Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative UMR 7238, 15 rue de l'Ecole de Médecine, 75006, Paris, France. antonio.fortunato@upmc.fr.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy. antonio.fortunato@upmc.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sordino</LastName>
<ForeName>Paolo</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Andreakis</LastName>
<ForeName>Nikos</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Australian Institute of Marine Science, PMB N° 3, Townsville MC, QLD, 4810, Australia. n.andreakis@gmail.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia. n.andreakis@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Mol Evol</MedlineTA>
<NlmUniqueID>0360051</NlmUniqueID>
<ISSNLinking>0022-2844</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006420">Hemeproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045725">Tetrapyrroles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C040231">heme-binding protein</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>IUBMB Life. 2007 Aug-Sep;59(8-9):542-51</RefSource>
<PMID Version="1">17701549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2008 Jan 23;582(2):273-8</RefSource>
<PMID Version="1">18083128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2008 Feb;146(2):772-88</RefSource>
<PMID Version="1">18065559</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Jun 26;324(5935):1724-6</RefSource>
<PMID Version="1">19556510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IUBMB Life. 2009 Dec;61(12):1118-22</RefSource>
<PMID Version="1">19946891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2011 Sep 1;438(2):291-301</RefSource>
<PMID Version="1">21639858</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 2004 Nov 15;104(10):3136-47</RefSource>
<PMID Version="1">15297311</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2006 Sep 15;362(2):287-97</RefSource>
<PMID Version="1">16905148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Immunol. 2007 Feb 1;178(3):1450-6</RefSource>
<PMID Version="1">17237393</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Oct 20;281(42):31553-61</RefSource>
<PMID Version="1">16905545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2006 Sep;18(9):2157-71</RefSource>
<PMID Version="1">16891401</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Oct 20;437(7062):1173-8</RefSource>
<PMID Version="1">16189514</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2003 Aug 12;19(12):1572-4</RefSource>
<PMID Version="1">12912839</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 2011 Oct;28(10):2731-9</RefSource>
<PMID Version="1">21546353</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2011 Feb;23(2):785-805</RefSource>
<PMID Version="1">21317376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2006 Nov 27;580(27):6447-54</RefSource>
<PMID Version="1">17098234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2013;64:583-607</RefSource>
<PMID Version="1">23451781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Mol Biol. 2007 Jan;14(1):23-9</RefSource>
<PMID Version="1">17159994</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2002 Nov 4;1600(1-2):68-73</RefSource>
<PMID Version="1">12445461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tohoku J Exp Med. 2007 Sep;213(1):1-16</RefSource>
<PMID Version="1">17785948</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2004 Feb 12;20(3):407-15</RefSource>
<PMID Version="1">14960467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2014 May 1;30(9):1312-3</RefSource>
<PMID Version="1">24451623</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2005 May 1;21(9):2104-5</RefSource>
<PMID Version="1">15647292</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2003 Jun 3;42(21):6536-44</RefSource>
<PMID Version="1">12767237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Photochem Photobiol Sci. 2008 Oct;7(10):1216-24</RefSource>
<PMID Version="1">18846286</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Biochem Biophys. 2002 Nov 15;407(2):196-201</RefSource>
<PMID Version="1">12413491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Signal Behav. 2007 Sep;2(5):413-5</RefSource>
<PMID Version="1">19704618</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2004 Jan 21;126(2):436-7</RefSource>
<PMID Version="1">14719919</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2012 Oct;63(16):5967-78</RefSource>
<PMID Version="1">22991161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant. 2013 May;6(3):931-44</RefSource>
<PMID Version="1">23180671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2015 Jan;167(1):60-79</RefSource>
<PMID Version="1">25404729</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2011 Apr 15;27(8):1164-5</RefSource>
<PMID Version="1">21335321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Rev. 2009 Oct;109(10):4596-616</RefSource>
<PMID Version="1">19764719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Toxicol Lett. 2005 Jul 4;157(3):175-88</RefSource>
<PMID Version="1">15917143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2009;537:113-37</RefSource>
<PMID Version="1">19378142</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009 Jul 28;4(7):e6405</RefSource>
<PMID Version="1">19636381</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 1991 Jul;60(1):45-52</RefSource>
<PMID Version="1">1653051</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2008 Nov 1;423(2):207-14</RefSource>
<PMID Version="1">18675890</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tohoku J Exp Med. 2005 Apr;205(4):297-318</RefSource>
<PMID Version="1">15750326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2001 Aug;17(8):754-5</RefSource>
<PMID Version="1">11524383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IUBMB Life. 2007 Nov;59(11):700-8</RefSource>
<PMID Version="1">17968708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2006 Jan;5(1):114-33</RefSource>
<PMID Version="1">16207701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1998 Nov 20;273(47):31388-94</RefSource>
<PMID Version="1">9813049</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Endocrinology. 2013 Feb;154(2):920-30</RefSource>
<PMID Version="1">23284102</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2005 Jan 3;201(1):83-93</RefSource>
<PMID Version="1">15623572</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 Jan 15;285(3):2140-51</RefSource>
<PMID Version="1">19901022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Insect Biochem Mol Biol. 2002 Nov;32(11):1533-41</RefSource>
<PMID Version="1">12530221</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2010 Sep;15(9):488-98</RefSource>
<PMID Version="1">20598625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Syst Biol. 2010 May;59(3):307-21</RefSource>
<PMID Version="1">20525638</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2007 Dec 25;46(51):15033-41</RefSource>
<PMID Version="1">18044975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2005 Feb;5(2):340-50</RefSource>
<PMID Version="1">15627969</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1995 May 5;270(18):10897-901</RefSource>
<PMID Version="1">7738030</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Mol Brain Res. 1999 Dec 10;74(1-2):175-81</RefSource>
<PMID Version="1">10640688</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</RefSource>
<PMID Version="1">9254694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eukaryot Cell. 2006 Mar;5(3):457-68</RefSource>
<PMID Version="1">16524901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Elife. 2014 May 23;3:e02286</RefSource>
<PMID Version="1">24859755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Nov 19;279(47):49367-83</RefSource>
<PMID Version="1">15322131</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056890" MajorTopicYN="N">Eukaryota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006420" MajorTopicYN="N">Hemeproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045725" MajorTopicYN="N">Tetrapyrroles</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Apoptosis</Keyword>
<Keyword MajorTopicYN="N">Evolution</Keyword>
<Keyword MajorTopicYN="N">Heme binding</Keyword>
<Keyword MajorTopicYN="N">Light sensing</Keyword>
<Keyword MajorTopicYN="N">SOUL</Keyword>
<Keyword MajorTopicYN="N">Tetrapyrrole metabolism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27209522</ArticleId>
<ArticleId IdType="doi">10.1007/s00239-016-9745-9</ArticleId>
<ArticleId IdType="pii">10.1007/s00239-016-9745-9</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001D96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27209522
   |texte=   Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27209522" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024