Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution of Protein Quaternary Structure in Response to Selective Pressure for Increased Thermostability.

Identifieur interne : 001D36 ( PubMed/Corpus ); précédent : 001D35; suivant : 001D37

Evolution of Protein Quaternary Structure in Response to Selective Pressure for Increased Thermostability.

Auteurs : Nicholas J. Fraser ; Jian-Wei Liu ; Peter D. Mabbitt ; Galen J. Correy ; Chris W. Coppin ; Mathilde Lethier ; Matthew A. Perugini ; James M. Murphy ; John G. Oakeshott ; Martin Weik ; Colin J. Jackson

Source :

RBID : pubmed:27016206

English descriptors

Abstract

Oligomerization has been suggested to be an important mechanism for increasing or maintaining the thermostability of proteins. Although it is evident that protein-protein contacts can result in substantial stabilization in many extant proteins, evidence for evolutionary selection for oligomerization is largely indirect and little is understood of the early steps in the evolution of oligomers. A laboratory-directed evolution experiment that selected for increased thermostability in the αE7 carboxylesterase from the Australian sheep blowfly, Lucilia cuprina, resulted in a thermostable variant, LcαE7-4a, that displayed increased levels of dimeric and tetrameric quaternary structure. A trade-off between activity and thermostability was made during the evolution of thermostability, with the higher-order oligomeric species displaying the greatest thermostability and lowest catalytic activity. Analysis of monomeric and dimeric LcαE7-4a crystal structures revealed that only one of the oligomerization-inducing mutations was located at a potential protein-protein interface. This work demonstrates that by imposing a selective pressure demanding greater thermostability, mutations can lead to increased oligomerization and stabilization, providing support for the hypothesis that oligomerization is a viable evolutionary strategy for protein stabilization.

DOI: 10.1016/j.jmb.2016.03.014
PubMed: 27016206

Links to Exploration step

pubmed:27016206

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution of Protein Quaternary Structure in Response to Selective Pressure for Increased Thermostability.</title>
<author>
<name sortKey="Fraser, Nicholas J" sort="Fraser, Nicholas J" uniqKey="Fraser N" first="Nicholas J" last="Fraser">Nicholas J. Fraser</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jian Wei" sort="Liu, Jian Wei" uniqKey="Liu J" first="Jian-Wei" last="Liu">Jian-Wei Liu</name>
<affiliation>
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Canberra, ACT 0200, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mabbitt, Peter D" sort="Mabbitt, Peter D" uniqKey="Mabbitt P" first="Peter D" last="Mabbitt">Peter D. Mabbitt</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Correy, Galen J" sort="Correy, Galen J" uniqKey="Correy G" first="Galen J" last="Correy">Galen J. Correy</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coppin, Chris W" sort="Coppin, Chris W" uniqKey="Coppin C" first="Chris W" last="Coppin">Chris W. Coppin</name>
<affiliation>
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Canberra, ACT 0200, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lethier, Mathilde" sort="Lethier, Mathilde" uniqKey="Lethier M" first="Mathilde" last="Lethier">Mathilde Lethier</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Structurale, Commissariat a l'Energie Atomique, F-38027 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perugini, Matthew A" sort="Perugini, Matthew A" uniqKey="Perugini M" first="Matthew A" last="Perugini">Matthew A. Perugini</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Murphy, James M" sort="Murphy, James M" uniqKey="Murphy J" first="James M" last="Murphy">James M. Murphy</name>
<affiliation>
<nlm:affiliation>Cell Signalling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oakeshott, John G" sort="Oakeshott, John G" uniqKey="Oakeshott J" first="John G" last="Oakeshott">John G. Oakeshott</name>
<affiliation>
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Canberra, ACT 0200, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weik, Martin" sort="Weik, Martin" uniqKey="Weik M" first="Martin" last="Weik">Martin Weik</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Structurale, Commissariat a l'Energie Atomique, F-38027 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jackson, Colin J" sort="Jackson, Colin J" uniqKey="Jackson C" first="Colin J" last="Jackson">Colin J. Jackson</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia. Electronic address: cjackson@rsc.anu.edu.au.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27016206</idno>
<idno type="pmid">27016206</idno>
<idno type="doi">10.1016/j.jmb.2016.03.014</idno>
<idno type="wicri:Area/PubMed/Corpus">001D36</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D36</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution of Protein Quaternary Structure in Response to Selective Pressure for Increased Thermostability.</title>
<author>
<name sortKey="Fraser, Nicholas J" sort="Fraser, Nicholas J" uniqKey="Fraser N" first="Nicholas J" last="Fraser">Nicholas J. Fraser</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jian Wei" sort="Liu, Jian Wei" uniqKey="Liu J" first="Jian-Wei" last="Liu">Jian-Wei Liu</name>
<affiliation>
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Canberra, ACT 0200, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mabbitt, Peter D" sort="Mabbitt, Peter D" uniqKey="Mabbitt P" first="Peter D" last="Mabbitt">Peter D. Mabbitt</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Correy, Galen J" sort="Correy, Galen J" uniqKey="Correy G" first="Galen J" last="Correy">Galen J. Correy</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coppin, Chris W" sort="Coppin, Chris W" uniqKey="Coppin C" first="Chris W" last="Coppin">Chris W. Coppin</name>
<affiliation>
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Canberra, ACT 0200, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lethier, Mathilde" sort="Lethier, Mathilde" uniqKey="Lethier M" first="Mathilde" last="Lethier">Mathilde Lethier</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Structurale, Commissariat a l'Energie Atomique, F-38027 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perugini, Matthew A" sort="Perugini, Matthew A" uniqKey="Perugini M" first="Matthew A" last="Perugini">Matthew A. Perugini</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Murphy, James M" sort="Murphy, James M" uniqKey="Murphy J" first="James M" last="Murphy">James M. Murphy</name>
<affiliation>
<nlm:affiliation>Cell Signalling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Oakeshott, John G" sort="Oakeshott, John G" uniqKey="Oakeshott J" first="John G" last="Oakeshott">John G. Oakeshott</name>
<affiliation>
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Canberra, ACT 0200, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weik, Martin" sort="Weik, Martin" uniqKey="Weik M" first="Martin" last="Weik">Martin Weik</name>
<affiliation>
<nlm:affiliation>Institut de Biologie Structurale, Commissariat a l'Energie Atomique, F-38027 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jackson, Colin J" sort="Jackson, Colin J" uniqKey="Jackson C" first="Colin J" last="Jackson">Colin J. Jackson</name>
<affiliation>
<nlm:affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia. Electronic address: cjackson@rsc.anu.edu.au.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="eISSN">1089-8638</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Australia</term>
<term>Biological Evolution</term>
<term>Mutation (genetics)</term>
<term>Protein Multimerization (genetics)</term>
<term>Protein Structure, Quaternary</term>
<term>Proteins (genetics)</term>
<term>Sequence Alignment (methods)</term>
<term>Sheep (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
<term>Protein Multimerization</term>
<term>Sheep</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Australia</term>
<term>Biological Evolution</term>
<term>Protein Structure, Quaternary</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oligomerization has been suggested to be an important mechanism for increasing or maintaining the thermostability of proteins. Although it is evident that protein-protein contacts can result in substantial stabilization in many extant proteins, evidence for evolutionary selection for oligomerization is largely indirect and little is understood of the early steps in the evolution of oligomers. A laboratory-directed evolution experiment that selected for increased thermostability in the αE7 carboxylesterase from the Australian sheep blowfly, Lucilia cuprina, resulted in a thermostable variant, LcαE7-4a, that displayed increased levels of dimeric and tetrameric quaternary structure. A trade-off between activity and thermostability was made during the evolution of thermostability, with the higher-order oligomeric species displaying the greatest thermostability and lowest catalytic activity. Analysis of monomeric and dimeric LcαE7-4a crystal structures revealed that only one of the oligomerization-inducing mutations was located at a potential protein-protein interface. This work demonstrates that by imposing a selective pressure demanding greater thermostability, mutations can lead to increased oligomerization and stabilization, providing support for the hypothesis that oligomerization is a viable evolutionary strategy for protein stabilization.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27016206</PMID>
<DateCreated>
<Year>2016</Year>
<Month>05</Month>
<Day>28</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>06</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1089-8638</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>428</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jun</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution of Protein Quaternary Structure in Response to Selective Pressure for Increased Thermostability.</ArticleTitle>
<Pagination>
<MedlinePgn>2359-71</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmb.2016.03.014</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0022-2836(16)00200-X</ELocationID>
<Abstract>
<AbstractText>Oligomerization has been suggested to be an important mechanism for increasing or maintaining the thermostability of proteins. Although it is evident that protein-protein contacts can result in substantial stabilization in many extant proteins, evidence for evolutionary selection for oligomerization is largely indirect and little is understood of the early steps in the evolution of oligomers. A laboratory-directed evolution experiment that selected for increased thermostability in the αE7 carboxylesterase from the Australian sheep blowfly, Lucilia cuprina, resulted in a thermostable variant, LcαE7-4a, that displayed increased levels of dimeric and tetrameric quaternary structure. A trade-off between activity and thermostability was made during the evolution of thermostability, with the higher-order oligomeric species displaying the greatest thermostability and lowest catalytic activity. Analysis of monomeric and dimeric LcαE7-4a crystal structures revealed that only one of the oligomerization-inducing mutations was located at a potential protein-protein interface. This work demonstrates that by imposing a selective pressure demanding greater thermostability, mutations can lead to increased oligomerization and stabilization, providing support for the hypothesis that oligomerization is a viable evolutionary strategy for protein stabilization.</AbstractText>
<CopyrightInformation>Copyright © 2016 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fraser</LastName>
<ForeName>Nicholas J</ForeName>
<Initials>NJ</Initials>
<AffiliationInfo>
<Affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jian-Wei</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Canberra, ACT 0200, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mabbitt</LastName>
<ForeName>Peter D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Correy</LastName>
<ForeName>Galen J</ForeName>
<Initials>GJ</Initials>
<AffiliationInfo>
<Affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coppin</LastName>
<ForeName>Chris W</ForeName>
<Initials>CW</Initials>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Canberra, ACT 0200, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lethier</LastName>
<ForeName>Mathilde</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institut de Biologie Structurale, Commissariat a l'Energie Atomique, F-38027 Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perugini</LastName>
<ForeName>Matthew A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Murphy</LastName>
<ForeName>James M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Cell Signalling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oakeshott</LastName>
<ForeName>John G</ForeName>
<Initials>JG</Initials>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Canberra, ACT 0200, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weik</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institut de Biologie Structurale, Commissariat a l'Energie Atomique, F-38027 Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jackson</LastName>
<ForeName>Colin J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia. Electronic address: cjackson@rsc.anu.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>03</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001315" MajorTopicYN="N">Australia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012756" MajorTopicYN="N">Sheep</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">carboxylesterase</Keyword>
<Keyword MajorTopicYN="N">directed evolution</Keyword>
<Keyword MajorTopicYN="N">interface</Keyword>
<Keyword MajorTopicYN="N">oligomerization</Keyword>
<Keyword MajorTopicYN="N">thermostability</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>11</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>03</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27016206</ArticleId>
<ArticleId IdType="pii">S0022-2836(16)00200-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmb.2016.03.014</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D36 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001D36 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27016206
   |texte=   Evolution of Protein Quaternary Structure in Response to Selective Pressure for Increased Thermostability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27016206" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024