Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distribution of Rotundone and Possible Translocation of Related Compounds Amongst Grapevine Tissues in Vitis vinifera L. cv. Shiraz.

Identifieur interne : 001C84 ( PubMed/Corpus ); précédent : 001C83; suivant : 001C85

Distribution of Rotundone and Possible Translocation of Related Compounds Amongst Grapevine Tissues in Vitis vinifera L. cv. Shiraz.

Auteurs : Pangzhen Zhang ; Sigfredo Fuentes ; Yueying Wang ; Rui Deng ; Mark Krstic ; Markus Herderich ; Edward W R. Barlow ; Kate Howell

Source :

RBID : pubmed:27446104

Abstract

Rotundone is an attractive wine aroma compound, especially important for cool climate Shiraz. Its presence in wine is mainly from the grape skin, but can also be found in non-grape tissues, such as leaves and stems. Whether rotundone is produced independently within different grapevine tissues or transported amongst non-grape tissues and grape berries remains unclear. The current study investigated the distribution of this compound in different vine tissues during development and studied the most likely mode of rotundone translocation-via phloem-using stable isotope feeding. In addition, local production of rotundone induced by herbivore feeding was assessed. Results showed that rotundone was firstly detected in the petioles and peduncles/rachises within the development of Vitis vinifera L. cv. Shiraz. Different grapevine tissues had a similar pattern of rotundone production at different grape developmental stages. In the individual vine shoots, non-grape tissues contained higher concentrations and amounts of rotundone compared to berries, which showed that non-grape tissues were the larger pool of rotundone within the plant. This study confirmed the local production of rotundone in individual tissues and ruled out the possibility of phloem translocation of rotundone between different tissues. In addition, other terpenes, including one monoterpenoid (geraniol) and six sesquiterpenes (clovene, α-ylangene, β-copaene, α-muurolene, δ-cadinene, and cis/trans-calamenene) were, for the first time, detected in the ethylenediaminetetraacetic acid-facilitated petiole phloem exudates, with their originality unconfirmed. Unlike other herbivore-induced terpenes, herbivorous activity had limited influences on the concentration of rotundone in grapevine leaves.

DOI: 10.3389/fpls.2016.00859
PubMed: 27446104

Links to Exploration step

pubmed:27446104

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distribution of Rotundone and Possible Translocation of Related Compounds Amongst Grapevine Tissues in Vitis vinifera L. cv. Shiraz.</title>
<author>
<name sortKey="Zhang, Pangzhen" sort="Zhang, Pangzhen" uniqKey="Zhang P" first="Pangzhen" last="Zhang">Pangzhen Zhang</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fuentes, Sigfredo" sort="Fuentes, Sigfredo" uniqKey="Fuentes S" first="Sigfredo" last="Fuentes">Sigfredo Fuentes</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yueying" sort="Wang, Yueying" uniqKey="Wang Y" first="Yueying" last="Wang">Yueying Wang</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deng, Rui" sort="Deng, Rui" uniqKey="Deng R" first="Rui" last="Deng">Rui Deng</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krstic, Mark" sort="Krstic, Mark" uniqKey="Krstic M" first="Mark" last="Krstic">Mark Krstic</name>
<affiliation>
<nlm:affiliation>Australian Wine Research Institute, Mooroolbark VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Herderich, Markus" sort="Herderich, Markus" uniqKey="Herderich M" first="Markus" last="Herderich">Markus Herderich</name>
<affiliation>
<nlm:affiliation>Australian Wine Research Institute, Urrbrae SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barlow, Edward W R" sort="Barlow, Edward W R" uniqKey="Barlow E" first="Edward W R" last="Barlow">Edward W R. Barlow</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Howell, Kate" sort="Howell, Kate" uniqKey="Howell K" first="Kate" last="Howell">Kate Howell</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, ParkvilleVIC, Australia; UMR 1083 Sciences pour l'Oenologie, Institut National de la Recherche AgronomiqueMontpellier, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27446104</idno>
<idno type="pmid">27446104</idno>
<idno type="doi">10.3389/fpls.2016.00859</idno>
<idno type="wicri:Area/PubMed/Corpus">001C84</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001C84</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Distribution of Rotundone and Possible Translocation of Related Compounds Amongst Grapevine Tissues in Vitis vinifera L. cv. Shiraz.</title>
<author>
<name sortKey="Zhang, Pangzhen" sort="Zhang, Pangzhen" uniqKey="Zhang P" first="Pangzhen" last="Zhang">Pangzhen Zhang</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fuentes, Sigfredo" sort="Fuentes, Sigfredo" uniqKey="Fuentes S" first="Sigfredo" last="Fuentes">Sigfredo Fuentes</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yueying" sort="Wang, Yueying" uniqKey="Wang Y" first="Yueying" last="Wang">Yueying Wang</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deng, Rui" sort="Deng, Rui" uniqKey="Deng R" first="Rui" last="Deng">Rui Deng</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krstic, Mark" sort="Krstic, Mark" uniqKey="Krstic M" first="Mark" last="Krstic">Mark Krstic</name>
<affiliation>
<nlm:affiliation>Australian Wine Research Institute, Mooroolbark VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Herderich, Markus" sort="Herderich, Markus" uniqKey="Herderich M" first="Markus" last="Herderich">Markus Herderich</name>
<affiliation>
<nlm:affiliation>Australian Wine Research Institute, Urrbrae SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barlow, Edward W R" sort="Barlow, Edward W R" uniqKey="Barlow E" first="Edward W R" last="Barlow">Edward W R. Barlow</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Howell, Kate" sort="Howell, Kate" uniqKey="Howell K" first="Kate" last="Howell">Kate Howell</name>
<affiliation>
<nlm:affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, ParkvilleVIC, Australia; UMR 1083 Sciences pour l'Oenologie, Institut National de la Recherche AgronomiqueMontpellier, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rotundone is an attractive wine aroma compound, especially important for cool climate Shiraz. Its presence in wine is mainly from the grape skin, but can also be found in non-grape tissues, such as leaves and stems. Whether rotundone is produced independently within different grapevine tissues or transported amongst non-grape tissues and grape berries remains unclear. The current study investigated the distribution of this compound in different vine tissues during development and studied the most likely mode of rotundone translocation-via phloem-using stable isotope feeding. In addition, local production of rotundone induced by herbivore feeding was assessed. Results showed that rotundone was firstly detected in the petioles and peduncles/rachises within the development of Vitis vinifera L. cv. Shiraz. Different grapevine tissues had a similar pattern of rotundone production at different grape developmental stages. In the individual vine shoots, non-grape tissues contained higher concentrations and amounts of rotundone compared to berries, which showed that non-grape tissues were the larger pool of rotundone within the plant. This study confirmed the local production of rotundone in individual tissues and ruled out the possibility of phloem translocation of rotundone between different tissues. In addition, other terpenes, including one monoterpenoid (geraniol) and six sesquiterpenes (clovene, α-ylangene, β-copaene, α-muurolene, δ-cadinene, and cis/trans-calamenene) were, for the first time, detected in the ethylenediaminetetraacetic acid-facilitated petiole phloem exudates, with their originality unconfirmed. Unlike other herbivore-induced terpenes, herbivorous activity had limited influences on the concentration of rotundone in grapevine leaves.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27446104</PMID>
<DateCreated>
<Year>2016</Year>
<Month>07</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Distribution of Rotundone and Possible Translocation of Related Compounds Amongst Grapevine Tissues in Vitis vinifera L. cv. Shiraz.</ArticleTitle>
<Pagination>
<MedlinePgn>859</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2016.00859</ELocationID>
<Abstract>
<AbstractText>Rotundone is an attractive wine aroma compound, especially important for cool climate Shiraz. Its presence in wine is mainly from the grape skin, but can also be found in non-grape tissues, such as leaves and stems. Whether rotundone is produced independently within different grapevine tissues or transported amongst non-grape tissues and grape berries remains unclear. The current study investigated the distribution of this compound in different vine tissues during development and studied the most likely mode of rotundone translocation-via phloem-using stable isotope feeding. In addition, local production of rotundone induced by herbivore feeding was assessed. Results showed that rotundone was firstly detected in the petioles and peduncles/rachises within the development of Vitis vinifera L. cv. Shiraz. Different grapevine tissues had a similar pattern of rotundone production at different grape developmental stages. In the individual vine shoots, non-grape tissues contained higher concentrations and amounts of rotundone compared to berries, which showed that non-grape tissues were the larger pool of rotundone within the plant. This study confirmed the local production of rotundone in individual tissues and ruled out the possibility of phloem translocation of rotundone between different tissues. In addition, other terpenes, including one monoterpenoid (geraniol) and six sesquiterpenes (clovene, α-ylangene, β-copaene, α-muurolene, δ-cadinene, and cis/trans-calamenene) were, for the first time, detected in the ethylenediaminetetraacetic acid-facilitated petiole phloem exudates, with their originality unconfirmed. Unlike other herbivore-induced terpenes, herbivorous activity had limited influences on the concentration of rotundone in grapevine leaves.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Pangzhen</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fuentes</LastName>
<ForeName>Sigfredo</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yueying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krstic</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Australian Wine Research Institute, Mooroolbark VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Herderich</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Australian Wine Research Institute, Urrbrae SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barlow</LastName>
<ForeName>Edward W R</ForeName>
<Initials>EW</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Howell</LastName>
<ForeName>Kate</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, ParkvilleVIC, Australia; UMR 1083 Sciences pour l'Oenologie, Institut National de la Recherche AgronomiqueMontpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2008;59:41-66</RefSource>
<PMID Version="1">18031220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2009;60:207-21</RefSource>
<PMID Version="1">19025382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2010 Aug;232(3):719-29</RefSource>
<PMID Version="1">20563731</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Plant Biol. 2013 Jan 30;13:15</RefSource>
<PMID Version="1">23363415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Food Chem. 2016 Aug 1;204:463-74</RefSource>
<PMID Version="1">26988525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2008 May 28;56(10 ):3745-8</RefSource>
<PMID Version="1">18461962</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2005 Mar;137(3):1160-8</RefSource>
<PMID Version="1">15728342</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Ecol. 1995 Nov;21(11):1781-8</RefSource>
<PMID Version="1">24233829</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2005 May 15;1734(2):91-111</RefSource>
<PMID Version="1">15904867</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2016 Feb;67(3):799-808</RefSource>
<PMID Version="1">26590310</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2016 Feb;67(3):787-98</RefSource>
<PMID Version="1">26590863</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1974 Jan;53(1):96-103</RefSource>
<PMID Version="1">16658661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2004 Nov;136(3):3795-803</RefSource>
<PMID Version="1">15516516</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2012 Mar 7;60(9):2281-7</RefSource>
<PMID Version="1">22360455</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phytochemistry. 2005 Feb;66(3):305-11</RefSource>
<PMID Version="1">15680987</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phytochemistry. 2000 Sep;55(2):141-68</RefSource>
<PMID Version="1">11065290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2007 Jul 25;55(15):5948-55</RefSource>
<PMID Version="1">17580875</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2015 Jul 15;10 (7):e0133137</RefSource>
<PMID Version="1">26176692</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2008 May 28;56(10 ):3738-44</RefSource>
<PMID Version="1">18461961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2015 May 6;63(17):4276-83</RefSource>
<PMID Version="1">25891266</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Cell Dev Biol. 2012;28:489-521</RefSource>
<PMID Version="1">22559264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2014 Nov 5;62(44):10809-15</RefSource>
<PMID Version="1">25307830</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2009 Mar;69(4):473-88</RefSource>
<PMID Version="1">19083153</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4914589</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">herbivore attack</Keyword>
<Keyword MajorTopicYN="N">pepper aroma</Keyword>
<Keyword MajorTopicYN="N">phloem translocation</Keyword>
<Keyword MajorTopicYN="N">rotundone</Keyword>
<Keyword MajorTopicYN="N">secondary metabolite</Keyword>
<Keyword MajorTopicYN="N">sesquiterpenes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>03</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27446104</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2016.00859</ArticleId>
<ArticleId IdType="pmc">PMC4914589</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C84 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001C84 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27446104
   |texte=   Distribution of Rotundone and Possible Translocation of Related Compounds Amongst Grapevine Tissues in Vitis vinifera L. cv. Shiraz.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27446104" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024