Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.

Identifieur interne : 001B79 ( PubMed/Corpus ); précédent : 001B78; suivant : 001B80

Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.

Auteurs : Jayde Livingstone ; Andrew W. Stevenson ; Duncan J. Butler ; Daniel H Usermann ; Jean-François Adam

Source :

RBID : pubmed:27370143

English descriptors

Abstract

Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy.

DOI: 10.1118/1.4953833
PubMed: 27370143

Links to Exploration step

pubmed:27370143

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.</title>
<author>
<name sortKey="Livingstone, Jayde" sort="Livingstone, Jayde" uniqKey="Livingstone J" first="Jayde" last="Livingstone">Jayde Livingstone</name>
<affiliation>
<nlm:affiliation>Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stevenson, Andrew W" sort="Stevenson, Andrew W" uniqKey="Stevenson A" first="Andrew W" last="Stevenson">Andrew W. Stevenson</name>
<affiliation>
<nlm:affiliation>Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and CSIRO Manufacturing, Clayton South, Victoria 3169, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Butler, Duncan J" sort="Butler, Duncan J" uniqKey="Butler D" first="Duncan J" last="Butler">Duncan J. Butler</name>
<affiliation>
<nlm:affiliation>Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="H Usermann, Daniel" sort="H Usermann, Daniel" uniqKey="H Usermann D" first="Daniel" last="H Usermann">Daniel H Usermann</name>
<affiliation>
<nlm:affiliation>Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Adam, Jean Francois" sort="Adam, Jean Francois" uniqKey="Adam J" first="Jean-François" last="Adam">Jean-François Adam</name>
<affiliation>
<nlm:affiliation>Equipe d'accueil Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, European Synchrotron Radiation Facility - ID17, Grenoble 38043, France and Centre Hospitalier Universitaire de Grenoble, Grenoble 38043, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27370143</idno>
<idno type="pmid">27370143</idno>
<idno type="doi">10.1118/1.4953833</idno>
<idno type="wicri:Area/PubMed/Corpus">001B79</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001B79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.</title>
<author>
<name sortKey="Livingstone, Jayde" sort="Livingstone, Jayde" uniqKey="Livingstone J" first="Jayde" last="Livingstone">Jayde Livingstone</name>
<affiliation>
<nlm:affiliation>Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stevenson, Andrew W" sort="Stevenson, Andrew W" uniqKey="Stevenson A" first="Andrew W" last="Stevenson">Andrew W. Stevenson</name>
<affiliation>
<nlm:affiliation>Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and CSIRO Manufacturing, Clayton South, Victoria 3169, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Butler, Duncan J" sort="Butler, Duncan J" uniqKey="Butler D" first="Duncan J" last="Butler">Duncan J. Butler</name>
<affiliation>
<nlm:affiliation>Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="H Usermann, Daniel" sort="H Usermann, Daniel" uniqKey="H Usermann D" first="Daniel" last="H Usermann">Daniel H Usermann</name>
<affiliation>
<nlm:affiliation>Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Adam, Jean Francois" sort="Adam, Jean Francois" uniqKey="Adam J" first="Jean-François" last="Adam">Jean-François Adam</name>
<affiliation>
<nlm:affiliation>Equipe d'accueil Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, European Synchrotron Radiation Facility - ID17, Grenoble 38043, France and Centre Hospitalier Universitaire de Grenoble, Grenoble 38043, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Medical physics</title>
<idno type="eISSN">2473-4209</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calibration</term>
<term>Equipment Design</term>
<term>Linear Models</term>
<term>Photons</term>
<term>Radiometry (instrumentation)</term>
<term>Radiometry (methods)</term>
<term>Radiotherapy (instrumentation)</term>
<term>Radiotherapy (methods)</term>
<term>Synchrotrons</term>
<term>Water</term>
<term>X-Rays</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Radiometry</term>
<term>Radiotherapy</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Radiometry</term>
<term>Radiotherapy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Calibration</term>
<term>Equipment Design</term>
<term>Linear Models</term>
<term>Photons</term>
<term>Synchrotrons</term>
<term>X-Rays</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27370143</PMID>
<DateCreated>
<Year>2016</Year>
<Month>07</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>03</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2473-4209</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>43</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Medical physics</Title>
<ISOAbbreviation>Med Phys</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.</ArticleTitle>
<Pagination>
<MedlinePgn>4283</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1118/1.4953833</ELocationID>
<Abstract>
<AbstractText Label="PURPOSE" NlmCategory="OBJECTIVE">Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence of the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30-120 keV. The dose-rate dependence was measured in the range 1-700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The detector exhibits an energy dependence; however, beam quality correction factors (kQ) have been measured for energies in the range 30-120 keV. The kQ factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1-700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic film data.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The synthetic diamond detector is now well characterized and will be used to develop an experimental dosimetry protocol for spatially fractionated synchrotron radiotherapy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Livingstone</LastName>
<ForeName>Jayde</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stevenson</LastName>
<ForeName>Andrew W</ForeName>
<Initials>AW</Initials>
<AffiliationInfo>
<Affiliation>Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and CSIRO Manufacturing, Clayton South, Victoria 3169, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Butler</LastName>
<ForeName>Duncan J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Häusermann</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adam</LastName>
<ForeName>Jean-François</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Equipe d'accueil Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, European Synchrotron Radiation Facility - ID17, Grenoble 38043, France and Centre Hospitalier Universitaire de Grenoble, Grenoble 38043, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Med Phys</MedlineTA>
<NlmUniqueID>0425746</NlmUniqueID>
<ISSNLinking>0094-2405</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002138" MajorTopicYN="N">Calibration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004867" MajorTopicYN="N">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016014" MajorTopicYN="N">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017785" MajorTopicYN="N">Photons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011874" MajorTopicYN="N">Radiometry</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="Y">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011878" MajorTopicYN="N">Radiotherapy</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017356" MajorTopicYN="Y">Synchrotrons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014965" MajorTopicYN="Y">X-Rays</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27370143</ArticleId>
<ArticleId IdType="doi">10.1118/1.4953833</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B79 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001B79 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27370143
   |texte=   Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27370143" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024