Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Novel chitosan goethite bionanocomposite beads for arsenic remediation.

Identifieur interne : 001989 ( PubMed/Corpus ); précédent : 001988; suivant : 001990

Novel chitosan goethite bionanocomposite beads for arsenic remediation.

Auteurs : Jing He ; Fabrizio Bardelli ; Antoine Gehin ; Ewen Silvester ; Laurent Charlet

Source :

RBID : pubmed:27240296

English descriptors

Abstract

We report on the synthesis and As adsorption properties of a novel chitosan - iron (oxyhydr)oxide composite material for the remediation of arsenic-contaminated water supplies. FE-SEM, Mössbauer spectroscopy, ICP-OES and synchrotron (Bulk XAS, μXRF) techniques were applied to determine the composition of the new material and investigate the As uptake efficiency and mechanism. The iron (oxyhydr)oxide phase has been identified as a nano-sized goethite, well dispersed in the chitosan matrix, leading to the name 'chitosan goethite bionanocomposite' (CGB). The CGB material is prepared in the form of beads of high density and excellent compression strength; the embedding of the goethite nanoparticles in the chitosan matrix allows for the high adsorption capacity of nanoparticles to be realized. CGB beads remove both As(III) and As(V) efficiently from water, over the pH range 5-9, negating the need for pre-oxidation of As(III). Kinetic studies and μXRF analysis of CGB bead sections show that diffusion-adsorption of As(V) into CGB beads is faster than for As(III). Using CGB beads, synthetic high-arsenic water (0.5 mg-As/L) could be purified to world drinking standard level (<0.01 mg-As/L) using only 1.4 g/L CGB. When considered in combination with the advantages of the low-cost of raw materials required, and facile (green) synthesis route, CGB is a promising material for arsenic remediation, particularly in developing countries, which suffer a diversity of socio-economical-traditional constraints for water purification and sanitation.

DOI: 10.1016/j.watres.2016.05.032
PubMed: 27240296

Links to Exploration step

pubmed:27240296

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Novel chitosan goethite bionanocomposite beads for arsenic remediation.</title>
<author>
<name sortKey="He, Jing" sort="He, Jing" uniqKey="He J" first="Jing" last="He">Jing He</name>
<affiliation>
<nlm:affiliation>School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, PR China; ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bardelli, Fabrizio" sort="Bardelli, Fabrizio" uniqKey="Bardelli F" first="Fabrizio" last="Bardelli">Fabrizio Bardelli</name>
<affiliation>
<nlm:affiliation>ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gehin, Antoine" sort="Gehin, Antoine" uniqKey="Gehin A" first="Antoine" last="Gehin">Antoine Gehin</name>
<affiliation>
<nlm:affiliation>ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Silvester, Ewen" sort="Silvester, Ewen" uniqKey="Silvester E" first="Ewen" last="Silvester">Ewen Silvester</name>
<affiliation>
<nlm:affiliation>Department of Ecology, Environment and Evolution, La Trobe University, Albury-Wodonga, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Charlet, Laurent" sort="Charlet, Laurent" uniqKey="Charlet L" first="Laurent" last="Charlet">Laurent Charlet</name>
<affiliation>
<nlm:affiliation>ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France; Institut Universitaire de France, 103, bd Saint-Michel, 75005 Paris, France. Electronic address: charlet38@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27240296</idno>
<idno type="pmid">27240296</idno>
<idno type="doi">10.1016/j.watres.2016.05.032</idno>
<idno type="wicri:Area/PubMed/Corpus">001989</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001989</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Novel chitosan goethite bionanocomposite beads for arsenic remediation.</title>
<author>
<name sortKey="He, Jing" sort="He, Jing" uniqKey="He J" first="Jing" last="He">Jing He</name>
<affiliation>
<nlm:affiliation>School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, PR China; ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bardelli, Fabrizio" sort="Bardelli, Fabrizio" uniqKey="Bardelli F" first="Fabrizio" last="Bardelli">Fabrizio Bardelli</name>
<affiliation>
<nlm:affiliation>ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gehin, Antoine" sort="Gehin, Antoine" uniqKey="Gehin A" first="Antoine" last="Gehin">Antoine Gehin</name>
<affiliation>
<nlm:affiliation>ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Silvester, Ewen" sort="Silvester, Ewen" uniqKey="Silvester E" first="Ewen" last="Silvester">Ewen Silvester</name>
<affiliation>
<nlm:affiliation>Department of Ecology, Environment and Evolution, La Trobe University, Albury-Wodonga, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Charlet, Laurent" sort="Charlet, Laurent" uniqKey="Charlet L" first="Laurent" last="Charlet">Laurent Charlet</name>
<affiliation>
<nlm:affiliation>ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France; Institut Universitaire de France, 103, bd Saint-Michel, 75005 Paris, France. Electronic address: charlet38@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Water research</title>
<idno type="eISSN">1879-2448</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption</term>
<term>Arsenic (chemistry)</term>
<term>Chitosan (chemistry)</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Water Pollutants, Chemical (chemistry)</term>
<term>Water Purification</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arsenic</term>
<term>Chitosan</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adsorption</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Water Purification</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on the synthesis and As adsorption properties of a novel chitosan - iron (oxyhydr)oxide composite material for the remediation of arsenic-contaminated water supplies. FE-SEM, Mössbauer spectroscopy, ICP-OES and synchrotron (Bulk XAS, μXRF) techniques were applied to determine the composition of the new material and investigate the As uptake efficiency and mechanism. The iron (oxyhydr)oxide phase has been identified as a nano-sized goethite, well dispersed in the chitosan matrix, leading to the name 'chitosan goethite bionanocomposite' (CGB). The CGB material is prepared in the form of beads of high density and excellent compression strength; the embedding of the goethite nanoparticles in the chitosan matrix allows for the high adsorption capacity of nanoparticles to be realized. CGB beads remove both As(III) and As(V) efficiently from water, over the pH range 5-9, negating the need for pre-oxidation of As(III). Kinetic studies and μXRF analysis of CGB bead sections show that diffusion-adsorption of As(V) into CGB beads is faster than for As(III). Using CGB beads, synthetic high-arsenic water (0.5 mg-As/L) could be purified to world drinking standard level (<0.01 mg-As/L) using only 1.4 g/L CGB. When considered in combination with the advantages of the low-cost of raw materials required, and facile (green) synthesis route, CGB is a promising material for arsenic remediation, particularly in developing countries, which suffer a diversity of socio-economical-traditional constraints for water purification and sanitation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27240296</PMID>
<DateCreated>
<Year>2016</Year>
<Month>07</Month>
<Day>25</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>08</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-2448</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>101</Volume>
<PubDate>
<Year>2016</Year>
<Month>Sep</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Water research</Title>
<ISOAbbreviation>Water Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Novel chitosan goethite bionanocomposite beads for arsenic remediation.</ArticleTitle>
<Pagination>
<MedlinePgn>1-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0043-1354(16)30360-8</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.watres.2016.05.032</ELocationID>
<Abstract>
<AbstractText>We report on the synthesis and As adsorption properties of a novel chitosan - iron (oxyhydr)oxide composite material for the remediation of arsenic-contaminated water supplies. FE-SEM, Mössbauer spectroscopy, ICP-OES and synchrotron (Bulk XAS, μXRF) techniques were applied to determine the composition of the new material and investigate the As uptake efficiency and mechanism. The iron (oxyhydr)oxide phase has been identified as a nano-sized goethite, well dispersed in the chitosan matrix, leading to the name 'chitosan goethite bionanocomposite' (CGB). The CGB material is prepared in the form of beads of high density and excellent compression strength; the embedding of the goethite nanoparticles in the chitosan matrix allows for the high adsorption capacity of nanoparticles to be realized. CGB beads remove both As(III) and As(V) efficiently from water, over the pH range 5-9, negating the need for pre-oxidation of As(III). Kinetic studies and μXRF analysis of CGB bead sections show that diffusion-adsorption of As(V) into CGB beads is faster than for As(III). Using CGB beads, synthetic high-arsenic water (0.5 mg-As/L) could be purified to world drinking standard level (<0.01 mg-As/L) using only 1.4 g/L CGB. When considered in combination with the advantages of the low-cost of raw materials required, and facile (green) synthesis route, CGB is a promising material for arsenic remediation, particularly in developing countries, which suffer a diversity of socio-economical-traditional constraints for water purification and sanitation.</AbstractText>
<CopyrightInformation>Copyright © 2016 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, PR China; ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bardelli</LastName>
<ForeName>Fabrizio</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gehin</LastName>
<ForeName>Antoine</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Silvester</LastName>
<ForeName>Ewen</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology, Environment and Evolution, La Trobe University, Albury-Wodonga, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Charlet</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>ISTerre, Université Grenoble Alpes, P.O. Box 53, F 38041 Grenoble, France; Institut Universitaire de France, 103, bd Saint-Michel, 75005 Paris, France. Electronic address: charlet38@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Water Res</MedlineTA>
<NlmUniqueID>0105072</NlmUniqueID>
<ISSNLinking>0043-1354</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014874">Water Pollutants, Chemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9012-76-4</RegistryNumber>
<NameOfSubstance UI="D048271">Chitosan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000327" MajorTopicYN="N">Adsorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048271" MajorTopicYN="N">Chitosan</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014874" MajorTopicYN="N">Water Pollutants, Chemical</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018508" MajorTopicYN="N">Water Purification</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arsenic</Keyword>
<Keyword MajorTopicYN="N">Bionanocomposite</Keyword>
<Keyword MajorTopicYN="N">Drinking water</Keyword>
<Keyword MajorTopicYN="N">Remediation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27240296</ArticleId>
<ArticleId IdType="pii">S0043-1354(16)30360-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.watres.2016.05.032</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001989 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001989 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27240296
   |texte=   Novel chitosan goethite bionanocomposite beads for arsenic remediation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27240296" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024