Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Superflexibility of graphene oxide.

Identifieur interne : 001735 ( PubMed/Corpus ); précédent : 001734; suivant : 001736

Superflexibility of graphene oxide.

Auteurs : Philippe Poulin ; Rouhollah Jalili ; Wilfrid Neri ; Frédéric Nallet ; Thibaut Divoux ; Annie Colin ; Seyed Hamed Aboutalebi ; Gordon Wallace ; Cécile Zakri

Source :

RBID : pubmed:27647890

Abstract

Graphene oxide (GO), the main precursor of graphene-based materials made by solution processing, is known to be very stiff. Indeed, it has a Young's modulus comparable to steel, on the order of 300 GPa. Despite its very high stiffness, we show here that GO is superflexible. We quantitatively measure the GO bending rigidity by characterizing the flattening of thermal undulations in response to shear forces in solution. Characterizations are performed by the combination of synchrotron X-ray diffraction at small angles and in situ rheology (rheo-SAXS) experiments using the high X-ray flux of a synchrotron source. The bending modulus is found to be 1 kT, which is about two orders of magnitude lower than the bending rigidity of neat graphene. This superflexibility compares with the fluidity of self-assembled liquid bilayers. This behavior is discussed by considering the mechanisms at play in bending and stretching deformations of atomic monolayers. The superflexibility of GO is a unique feature to develop bendable electronics after reduction, films, coatings, and fibers. This unique combination of properties of GO allows for flexibility in processing and fabrication coupled with a robustness in the fabricated structure.

DOI: 10.1073/pnas.1605121113
PubMed: 27647890

Links to Exploration step

pubmed:27647890

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Superflexibility of graphene oxide.</title>
<author>
<name sortKey="Poulin, Philippe" sort="Poulin, Philippe" uniqKey="Poulin P" first="Philippe" last="Poulin">Philippe Poulin</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jalili, Rouhollah" sort="Jalili, Rouhollah" uniqKey="Jalili R" first="Rouhollah" last="Jalili">Rouhollah Jalili</name>
<affiliation>
<nlm:affiliation>Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neri, Wilfrid" sort="Neri, Wilfrid" uniqKey="Neri W" first="Wilfrid" last="Neri">Wilfrid Neri</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nallet, Frederic" sort="Nallet, Frederic" uniqKey="Nallet F" first="Frédéric" last="Nallet">Frédéric Nallet</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Divoux, Thibaut" sort="Divoux, Thibaut" uniqKey="Divoux T" first="Thibaut" last="Divoux">Thibaut Divoux</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Colin, Annie" sort="Colin, Annie" uniqKey="Colin A" first="Annie" last="Colin">Annie Colin</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aboutalebi, Seyed Hamed" sort="Aboutalebi, Seyed Hamed" uniqKey="Aboutalebi S" first="Seyed Hamed" last="Aboutalebi">Seyed Hamed Aboutalebi</name>
<affiliation>
<nlm:affiliation>Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, 19395-5531, Tehran, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wallace, Gordon" sort="Wallace, Gordon" uniqKey="Wallace G" first="Gordon" last="Wallace">Gordon Wallace</name>
<affiliation>
<nlm:affiliation>Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zakri, Cecile" sort="Zakri, Cecile" uniqKey="Zakri C" first="Cécile" last="Zakri">Cécile Zakri</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France; zakri@crpp-bordeaux.cnrs.fr.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27647890</idno>
<idno type="pmid">27647890</idno>
<idno type="doi">10.1073/pnas.1605121113</idno>
<idno type="wicri:Area/PubMed/Corpus">001735</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001735</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Superflexibility of graphene oxide.</title>
<author>
<name sortKey="Poulin, Philippe" sort="Poulin, Philippe" uniqKey="Poulin P" first="Philippe" last="Poulin">Philippe Poulin</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jalili, Rouhollah" sort="Jalili, Rouhollah" uniqKey="Jalili R" first="Rouhollah" last="Jalili">Rouhollah Jalili</name>
<affiliation>
<nlm:affiliation>Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neri, Wilfrid" sort="Neri, Wilfrid" uniqKey="Neri W" first="Wilfrid" last="Neri">Wilfrid Neri</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nallet, Frederic" sort="Nallet, Frederic" uniqKey="Nallet F" first="Frédéric" last="Nallet">Frédéric Nallet</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Divoux, Thibaut" sort="Divoux, Thibaut" uniqKey="Divoux T" first="Thibaut" last="Divoux">Thibaut Divoux</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Colin, Annie" sort="Colin, Annie" uniqKey="Colin A" first="Annie" last="Colin">Annie Colin</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aboutalebi, Seyed Hamed" sort="Aboutalebi, Seyed Hamed" uniqKey="Aboutalebi S" first="Seyed Hamed" last="Aboutalebi">Seyed Hamed Aboutalebi</name>
<affiliation>
<nlm:affiliation>Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, 19395-5531, Tehran, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wallace, Gordon" sort="Wallace, Gordon" uniqKey="Wallace G" first="Gordon" last="Wallace">Gordon Wallace</name>
<affiliation>
<nlm:affiliation>Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zakri, Cecile" sort="Zakri, Cecile" uniqKey="Zakri C" first="Cécile" last="Zakri">Cécile Zakri</name>
<affiliation>
<nlm:affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France; zakri@crpp-bordeaux.cnrs.fr.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Graphene oxide (GO), the main precursor of graphene-based materials made by solution processing, is known to be very stiff. Indeed, it has a Young's modulus comparable to steel, on the order of 300 GPa. Despite its very high stiffness, we show here that GO is superflexible. We quantitatively measure the GO bending rigidity by characterizing the flattening of thermal undulations in response to shear forces in solution. Characterizations are performed by the combination of synchrotron X-ray diffraction at small angles and in situ rheology (rheo-SAXS) experiments using the high X-ray flux of a synchrotron source. The bending modulus is found to be 1 kT, which is about two orders of magnitude lower than the bending rigidity of neat graphene. This superflexibility compares with the fluidity of self-assembled liquid bilayers. This behavior is discussed by considering the mechanisms at play in bending and stretching deformations of atomic monolayers. The superflexibility of GO is a unique feature to develop bendable electronics after reduction, films, coatings, and fibers. This unique combination of properties of GO allows for flexibility in processing and fabrication coupled with a robustness in the fabricated structure.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">27647890</PMID>
<DateCreated>
<Year>2016</Year>
<Month>09</Month>
<Day>20</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>04</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>113</Volume>
<Issue>40</Issue>
<PubDate>
<Year>2016</Year>
<Month>Oct</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Superflexibility of graphene oxide.</ArticleTitle>
<Pagination>
<MedlinePgn>11088-11093</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Graphene oxide (GO), the main precursor of graphene-based materials made by solution processing, is known to be very stiff. Indeed, it has a Young's modulus comparable to steel, on the order of 300 GPa. Despite its very high stiffness, we show here that GO is superflexible. We quantitatively measure the GO bending rigidity by characterizing the flattening of thermal undulations in response to shear forces in solution. Characterizations are performed by the combination of synchrotron X-ray diffraction at small angles and in situ rheology (rheo-SAXS) experiments using the high X-ray flux of a synchrotron source. The bending modulus is found to be 1 kT, which is about two orders of magnitude lower than the bending rigidity of neat graphene. This superflexibility compares with the fluidity of self-assembled liquid bilayers. This behavior is discussed by considering the mechanisms at play in bending and stretching deformations of atomic monolayers. The superflexibility of GO is a unique feature to develop bendable electronics after reduction, films, coatings, and fibers. This unique combination of properties of GO allows for flexibility in processing and fabrication coupled with a robustness in the fabricated structure.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Poulin</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jalili</LastName>
<ForeName>Rouhollah</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Neri</LastName>
<ForeName>Wilfrid</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nallet</LastName>
<ForeName>Frédéric</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Divoux</LastName>
<ForeName>Thibaut</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6777-5084</Identifier>
<AffiliationInfo>
<Affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Colin</LastName>
<ForeName>Annie</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aboutalebi</LastName>
<ForeName>Seyed Hamed</ForeName>
<Initials>SH</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-3711-332X</Identifier>
<AffiliationInfo>
<Affiliation>Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, 19395-5531, Tehran, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wallace</LastName>
<ForeName>Gordon</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zakri</LastName>
<ForeName>Cécile</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, 33600 Pessac, France; zakri@crpp-bordeaux.cnrs.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Nanotechnol. 2010 Jun;5(6):406-11</RefSource>
<PMID Version="1">20512130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Langmuir. 2011 Aug 2;27(15):9122-30</RefSource>
<PMID Version="1">21662979</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev A. 1992 Jan 15;45(2):994-1008</RefSource>
<PMID Version="1">9907064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Jul 18;321(5887):385-8</RefSource>
<PMID Version="1">18635798</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Soc Rev. 2012 Jan 21;41(2):666-86</RefSource>
<PMID Version="1">21796314</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nano Lett. 2008 Jun;8(6):1704-8</RefSource>
<PMID Version="1">18444691</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Nano. 2012 Aug 28;6(8):7103-13</RefSource>
<PMID Version="1">22799441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jun;61(6 Pt B):6759-64</RefSource>
<PMID Version="1">11088370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 1992 Jul 6;69(1):112-115</RefSource>
<PMID Version="1">10046202</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nano Lett. 2008 Jul;8(7):2045-9</RefSource>
<PMID Version="1">18540659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2011 Dec 06;2:571</RefSource>
<PMID Version="1">22146390</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Small. 2012 Aug 20;8(16):2458-63</RefSource>
<PMID Version="1">22619180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nanotechnology. 2009 Feb 18;20(7):075702</RefSource>
<PMID Version="1">19417430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nano Lett. 2013 Jan 9;13(1):26-30</RefSource>
<PMID Version="1">23214980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nano Lett. 2012 Jul 11;12(7):3526-31</RefSource>
<PMID Version="1">22708530</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acc Chem Res. 2013 Jan 15;46(1):97-105</RefSource>
<PMID Version="1">23072428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Nano. 2010 Nov 23;4(11):6557-64</RefSource>
<PMID Version="1">20942443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Commun (Camb). 2010 Jun 21;46(23):4166-8</RefSource>
<PMID Version="1">20454743</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2010 Oct 13;132(40):14067-9</RefSource>
<PMID Version="1">20860374</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Condens Matter. 2011 May 18;23(19):194112</RefSource>
<PMID Version="1">21525562</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Appl Mater Interfaces. 2013 Jul 10;5(13):6225-31</RefSource>
<PMID Version="1">23763449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acc Chem Res. 2014 Apr 15;47(4):1267-76</RefSource>
<PMID Version="1">24555686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Soc Rev. 2010 Jan;39(1):228-40</RefSource>
<PMID Version="1">20023850</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Langmuir. 2013 Jun 25;29(25):8103-7</RefSource>
<PMID Version="1">23755877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2015 Aug 13;524(7564):204-7</RefSource>
<PMID Version="1">26222025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Nano. 2013 May 28;7(5):3981-90</RefSource>
<PMID Version="1">23574049</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur Phys J E Soft Matter. 2002 Aug;8(5):485-97</RefSource>
<PMID Version="1">15015121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 1994 Nov 21;73(21):2867-2870</RefSource>
<PMID Version="1">10057216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nanoscale. 2012 Sep 28;4(19):5910-6</RefSource>
<PMID Version="1">22898942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 1995 Feb 6;74(6):932-935</RefSource>
<PMID Version="1">10058885</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Nanotechnol. 2008 Feb;3(2):101-5</RefSource>
<PMID Version="1">18654470</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem Lett. 2012 Sep 6;3(17):2425-30</RefSource>
<PMID Version="1">26292127</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Nano. 2011 Apr 26;5(4):2908-15</RefSource>
<PMID Version="1">21375309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev A Gen Phys. 1988 Oct 1;38(7):3721-3727</RefSource>
<PMID Version="1">9900811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2015 Nov 16;6:8700</RefSource>
<PMID Version="1">26567720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Nanotechnol. 2008 Jun;3(6):327-31</RefSource>
<PMID Version="1">18654541</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">bending rigidity</Keyword>
<Keyword MajorTopicYN="N">graphene oxide</Keyword>
<Keyword MajorTopicYN="N">rheo-SAXS</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27647890</ArticleId>
<ArticleId IdType="pii">1605121113</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1605121113</ArticleId>
<ArticleId IdType="pmc">PMC5056031</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001735 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001735 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27647890
   |texte=   Superflexibility of graphene oxide.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27647890" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024