Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism.

Identifieur interne : 001447 ( PubMed/Corpus ); précédent : 001446; suivant : 001448

Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism.

Auteurs : Blake J. Cochran ; Liming Hou ; Anil Paul Chirackal Manavalan ; Benjamin M. Moore ; Fatiha Tabet ; Afroza Sultana ; Luisa Cuesta Torres ; Shudi Tang ; Sudichhya Shrestha ; Praween Senanayake ; Mili Patel ; William J. Ryder ; Andre Bongers ; Marie Maraninchi ; Valerie C. Wasinger ; Marit Westerterp ; Alan R. Tall ; Philip J. Barter ; Kerry-Anne Rye

Source :

RBID : pubmed:27702832

English descriptors

Abstract

Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes.

DOI: 10.2337/db16-0668
PubMed: 27702832

Links to Exploration step

pubmed:27702832

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism.</title>
<author>
<name sortKey="Cochran, Blake J" sort="Cochran, Blake J" uniqKey="Cochran B" first="Blake J" last="Cochran">Blake J. Cochran</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hou, Liming" sort="Hou, Liming" uniqKey="Hou L" first="Liming" last="Hou">Liming Hou</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Manavalan, Anil Paul Chirackal" sort="Manavalan, Anil Paul Chirackal" uniqKey="Manavalan A" first="Anil Paul Chirackal" last="Manavalan">Anil Paul Chirackal Manavalan</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moore, Benjamin M" sort="Moore, Benjamin M" uniqKey="Moore B" first="Benjamin M" last="Moore">Benjamin M. Moore</name>
<affiliation>
<nlm:affiliation>Division of Medicine, Royal Prince Alfred Hospital, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tabet, Fatiha" sort="Tabet, Fatiha" uniqKey="Tabet F" first="Fatiha" last="Tabet">Fatiha Tabet</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sultana, Afroza" sort="Sultana, Afroza" uniqKey="Sultana A" first="Afroza" last="Sultana">Afroza Sultana</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cuesta Torres, Luisa" sort="Cuesta Torres, Luisa" uniqKey="Cuesta Torres L" first="Luisa" last="Cuesta Torres">Luisa Cuesta Torres</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Shudi" sort="Tang, Shudi" uniqKey="Tang S" first="Shudi" last="Tang">Shudi Tang</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shrestha, Sudichhya" sort="Shrestha, Sudichhya" uniqKey="Shrestha S" first="Sudichhya" last="Shrestha">Sudichhya Shrestha</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Senanayake, Praween" sort="Senanayake, Praween" uniqKey="Senanayake P" first="Praween" last="Senanayake">Praween Senanayake</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, Mili" sort="Patel, Mili" uniqKey="Patel M" first="Mili" last="Patel">Mili Patel</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ryder, William J" sort="Ryder, William J" uniqKey="Ryder W" first="William J" last="Ryder">William J. Ryder</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bongers, Andre" sort="Bongers, Andre" uniqKey="Bongers A" first="Andre" last="Bongers">Andre Bongers</name>
<affiliation>
<nlm:affiliation>Biological Resource Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maraninchi, Marie" sort="Maraninchi, Marie" uniqKey="Maraninchi M" first="Marie" last="Maraninchi">Marie Maraninchi</name>
<affiliation>
<nlm:affiliation>Aix-Marseille Université, UMR_S1062, UMR_A1260, Nutrition, Obésité et Risque Thrombotique, Marseille, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wasinger, Valerie C" sort="Wasinger, Valerie C" uniqKey="Wasinger V" first="Valerie C" last="Wasinger">Valerie C. Wasinger</name>
<affiliation>
<nlm:affiliation>Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Westerterp, Marit" sort="Westerterp, Marit" uniqKey="Westerterp M" first="Marit" last="Westerterp">Marit Westerterp</name>
<affiliation>
<nlm:affiliation>Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tall, Alan R" sort="Tall, Alan R" uniqKey="Tall A" first="Alan R" last="Tall">Alan R. Tall</name>
<affiliation>
<nlm:affiliation>Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barter, Philip J" sort="Barter, Philip J" uniqKey="Barter P" first="Philip J" last="Barter">Philip J. Barter</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rye, Kerry Anne" sort="Rye, Kerry Anne" uniqKey="Rye K" first="Kerry-Anne" last="Rye">Kerry-Anne Rye</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia k.rye@unsw.edu.au karye@ozemail.com.au.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27702832</idno>
<idno type="pmid">27702832</idno>
<idno type="doi">10.2337/db16-0668</idno>
<idno type="wicri:Area/PubMed/Corpus">001447</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001447</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism.</title>
<author>
<name sortKey="Cochran, Blake J" sort="Cochran, Blake J" uniqKey="Cochran B" first="Blake J" last="Cochran">Blake J. Cochran</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hou, Liming" sort="Hou, Liming" uniqKey="Hou L" first="Liming" last="Hou">Liming Hou</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Manavalan, Anil Paul Chirackal" sort="Manavalan, Anil Paul Chirackal" uniqKey="Manavalan A" first="Anil Paul Chirackal" last="Manavalan">Anil Paul Chirackal Manavalan</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moore, Benjamin M" sort="Moore, Benjamin M" uniqKey="Moore B" first="Benjamin M" last="Moore">Benjamin M. Moore</name>
<affiliation>
<nlm:affiliation>Division of Medicine, Royal Prince Alfred Hospital, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tabet, Fatiha" sort="Tabet, Fatiha" uniqKey="Tabet F" first="Fatiha" last="Tabet">Fatiha Tabet</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sultana, Afroza" sort="Sultana, Afroza" uniqKey="Sultana A" first="Afroza" last="Sultana">Afroza Sultana</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cuesta Torres, Luisa" sort="Cuesta Torres, Luisa" uniqKey="Cuesta Torres L" first="Luisa" last="Cuesta Torres">Luisa Cuesta Torres</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Shudi" sort="Tang, Shudi" uniqKey="Tang S" first="Shudi" last="Tang">Shudi Tang</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shrestha, Sudichhya" sort="Shrestha, Sudichhya" uniqKey="Shrestha S" first="Sudichhya" last="Shrestha">Sudichhya Shrestha</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Senanayake, Praween" sort="Senanayake, Praween" uniqKey="Senanayake P" first="Praween" last="Senanayake">Praween Senanayake</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, Mili" sort="Patel, Mili" uniqKey="Patel M" first="Mili" last="Patel">Mili Patel</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ryder, William J" sort="Ryder, William J" uniqKey="Ryder W" first="William J" last="Ryder">William J. Ryder</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bongers, Andre" sort="Bongers, Andre" uniqKey="Bongers A" first="Andre" last="Bongers">Andre Bongers</name>
<affiliation>
<nlm:affiliation>Biological Resource Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maraninchi, Marie" sort="Maraninchi, Marie" uniqKey="Maraninchi M" first="Marie" last="Maraninchi">Marie Maraninchi</name>
<affiliation>
<nlm:affiliation>Aix-Marseille Université, UMR_S1062, UMR_A1260, Nutrition, Obésité et Risque Thrombotique, Marseille, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wasinger, Valerie C" sort="Wasinger, Valerie C" uniqKey="Wasinger V" first="Valerie C" last="Wasinger">Valerie C. Wasinger</name>
<affiliation>
<nlm:affiliation>Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Westerterp, Marit" sort="Westerterp, Marit" uniqKey="Westerterp M" first="Marit" last="Westerterp">Marit Westerterp</name>
<affiliation>
<nlm:affiliation>Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tall, Alan R" sort="Tall, Alan R" uniqKey="Tall A" first="Alan R" last="Tall">Alan R. Tall</name>
<affiliation>
<nlm:affiliation>Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barter, Philip J" sort="Barter, Philip J" uniqKey="Barter P" first="Philip J" last="Barter">Philip J. Barter</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rye, Kerry Anne" sort="Rye, Kerry Anne" uniqKey="Rye K" first="Kerry-Anne" last="Rye">Kerry-Anne Rye</name>
<affiliation>
<nlm:affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia k.rye@unsw.edu.au karye@ozemail.com.au.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Diabetes</title>
<idno type="eISSN">1939-327X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ATP Binding Cassette Transporter 1 (deficiency)</term>
<term>ATP Binding Cassette Transporter 1 (metabolism)</term>
<term>ATP Binding Cassette Transporter, Sub-Family G, Member 1 (deficiency)</term>
<term>ATP Binding Cassette Transporter, Sub-Family G, Member 1 (metabolism)</term>
<term>Adipose Tissue (metabolism)</term>
<term>Animals</term>
<term>Blotting, Western</term>
<term>Cholesterol (metabolism)</term>
<term>Fatty Acid Synthases</term>
<term>Glucose (metabolism)</term>
<term>Glycogen (metabolism)</term>
<term>Homeostasis (genetics)</term>
<term>Homeostasis (physiology)</term>
<term>Insulin (metabolism)</term>
<term>Insulin-Secreting Cells (metabolism)</term>
<term>Lactic Acid (blood)</term>
<term>Magnetic Resonance Imaging</term>
<term>Mass Spectrometry</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Muscle, Skeletal (metabolism)</term>
<term>Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Lactic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>ATP Binding Cassette Transporter 1</term>
<term>ATP Binding Cassette Transporter, Sub-Family G, Member 1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>ATP Binding Cassette Transporter 1</term>
<term>ATP Binding Cassette Transporter, Sub-Family G, Member 1</term>
<term>Cholesterol</term>
<term>Glucose</term>
<term>Glycogen</term>
<term>Insulin</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Homeostasis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Adipose Tissue</term>
<term>Insulin-Secreting Cells</term>
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Homeostasis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Blotting, Western</term>
<term>Fatty Acid Synthases</term>
<term>Magnetic Resonance Imaging</term>
<term>Mass Spectrometry</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Polymerase Chain Reaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27702832</PMID>
<DateCreated>
<Year>2016</Year>
<Month>10</Month>
<Day>05</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>05</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-327X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>65</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2016</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Diabetes</Title>
<ISOAbbreviation>Diabetes</ISOAbbreviation>
</Journal>
<ArticleTitle>Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism.</ArticleTitle>
<Pagination>
<MedlinePgn>3610-3620</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes.</AbstractText>
<CopyrightInformation>© 2016 by the American Diabetes Association.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cochran</LastName>
<ForeName>Blake J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Liming</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Manavalan</LastName>
<ForeName>Anil Paul Chirackal</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moore</LastName>
<ForeName>Benjamin M</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>Division of Medicine, Royal Prince Alfred Hospital, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tabet</LastName>
<ForeName>Fatiha</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sultana</LastName>
<ForeName>Afroza</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cuesta Torres</LastName>
<ForeName>Luisa</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Shudi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shrestha</LastName>
<ForeName>Sudichhya</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Senanayake</LastName>
<ForeName>Praween</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patel</LastName>
<ForeName>Mili</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ryder</LastName>
<ForeName>William J</ForeName>
<Initials>WJ</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bongers</LastName>
<ForeName>Andre</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Biological Resource Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maraninchi</LastName>
<ForeName>Marie</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Aix-Marseille Université, UMR_S1062, UMR_A1260, Nutrition, Obésité et Risque Thrombotique, Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wasinger</LastName>
<ForeName>Valerie C</ForeName>
<Initials>VC</Initials>
<AffiliationInfo>
<Affiliation>Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Westerterp</LastName>
<ForeName>Marit</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tall</LastName>
<ForeName>Alan R</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barter</LastName>
<ForeName>Philip J</ForeName>
<Initials>PJ</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Medicine, University of Sydney, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rye</LastName>
<ForeName>Kerry-Anne</ForeName>
<Initials>KA</Initials>
<AffiliationInfo>
<Affiliation>Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, Sydney, Australia k.rye@unsw.edu.au karye@ozemail.com.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Medicine, University of Sydney, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 HL087123</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Diabetes</MedlineTA>
<NlmUniqueID>0372763</NlmUniqueID>
<ISSNLinking>0012-1797</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C577833">ABCA1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C487540">ABCG1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064286">ATP Binding Cassette Transporter 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000070998">ATP Binding Cassette Transporter, Sub-Family G, Member 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007328">Insulin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>33X04XA5AT</RegistryNumber>
<NameOfSubstance UI="D019344">Lactic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-79-2</RegistryNumber>
<NameOfSubstance UI="D006003">Glycogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>97C5T2UQ7J</RegistryNumber>
<NameOfSubstance UI="D002784">Cholesterol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.85</RegistryNumber>
<NameOfSubstance UI="D064429">Fatty Acid Synthases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Diabetes. 2016 Dec 1;:</RefSource>
<PMID Version="1">27908917</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 2010 Sep;59(9):2178-87</RefSource>
<PMID Version="1">20547980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 1993 Aug 15;213(1):79-89</RefSource>
<PMID Version="1">8238886</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2007 Aug;6(8):1354-64</RefSource>
<PMID Version="1">17513293</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2007 Dec;117(12 ):3900-8</RefSource>
<PMID Version="1">17992262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetologia. 2001 Aug;44(8):929-45</RefSource>
<PMID Version="1">11484070</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Metab. 2012 Dec 5;16(6):723-37</RefSource>
<PMID Version="1">23217255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Diabetes Investig. 2012 Aug 20;3(4):377-83</RefSource>
<PMID Version="1">24843593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Endocrinology. 2007 Apr;148(4):1561-73</RefSource>
<PMID Version="1">17194745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 2007 Sep;56(9):2328-38</RefSource>
<PMID Version="1">17575085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Proced Online. 2009 Dec 03;11:3-31</RefSource>
<PMID Version="1">19957062</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetologia. 2003 Jan;46(1):3-19</RefSource>
<PMID Version="1">12637977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Atheroscler Thromb. 2009 Jun;16(3):292-6</RefSource>
<PMID Version="1">19556721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 1999 Aug;22(4):347-51</RefSource>
<PMID Version="1">10431237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes Care. 2009 Mar;32(3):456-61</RefSource>
<PMID Version="1">19106382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9774-9</RefSource>
<PMID Version="1">15210959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 2005 Feb;54(2):492-9</RefSource>
<PMID Version="1">15677507</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 1999 Aug;22(4):336-45</RefSource>
<PMID Version="1">10431236</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2007 Mar;13(3):340-7</RefSource>
<PMID Version="1">17322896</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gastroenterology. 2007 May;132(6):2169-80</RefSource>
<PMID Version="1">17498510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Endocrinol Metab. 2005 Feb;90(2):747-54</RefSource>
<PMID Version="1">15522932</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 1999 Aug;22(4):352-5</RefSource>
<PMID Version="1">10431238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetologia. 2015 Oct;58(10):2392-402</RefSource>
<PMID Version="1">26155745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2012 Jul;9(7):671-5</RefSource>
<PMID Version="1">22930834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes Care. 2010 Apr;33(4):869-74</RefSource>
<PMID Version="1">20067955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2010 Oct;120(10 ):3466-79</RefSource>
<PMID Version="1">20877011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Metab. 2011 Feb 2;13(2):183-94</RefSource>
<PMID Version="1">21284985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 2012 Mar;61(3):606-14</RefSource>
<PMID Version="1">22315322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arterioscler Thromb Vasc Biol. 2008 Feb;28(2):258-64</RefSource>
<PMID Version="1">18006857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetologia. 2013 May;56(5):1129-39</RefSource>
<PMID Version="1">23423668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Stem Cell. 2012 Aug 3;11(2):195-206</RefSource>
<PMID Version="1">22862945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1999 Jan;276(1 Pt 1):E70-7</RefSource>
<PMID Version="1">9886952</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 2005 Jun;54(6):1735-43</RefSource>
<PMID Version="1">15919795</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 2012 Mar;61(3):659-64</RefSource>
<PMID Version="1">22315310</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 2011 Dec;60(12):3186-96</RefSource>
<PMID Version="1">21998401</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 2002 Feb;51 Suppl 1:S262-4</RefSource>
<PMID Version="1">11815490</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Metabolism. 2000 Jul;49(7):833-8</RefSource>
<PMID Version="1">10909991</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2016 Apr 07;11(4):e0153280</RefSource>
<PMID Version="1">27055260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>JAMA. 1995 Jun 21;273(23):1855-61</RefSource>
<PMID Version="1">7776502</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 1987 Feb;36(2):152-8</RefSource>
<PMID Version="1">3100366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 1998 Jan 1;101(1):86-96</RefSource>
<PMID Version="1">9421470</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Diabetes Investig. 2012 Aug 20;3(4):371-6</RefSource>
<PMID Version="1">24843592</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Endocrinol Metab. 2013 Jul 1;305(1):E149-59</RefSource>
<PMID Version="1">23673159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 2002 May;51(5):1493-8</RefSource>
<PMID Version="1">11978647</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 2004 Jul;53(7):1782-9</RefSource>
<PMID Version="1">15220202</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 1986 Aug 16;2(8503):360-4</RefSource>
<PMID Version="1">2874367</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Endocrinol Metab. 2005 May-Jun;16(4):167-75</RefSource>
<PMID Version="1">15860413</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Endocrinol Metab. 2008 May;93(5):1767-73</RefSource>
<PMID Version="1">18303080</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2000 Jun 30;288(5475):2379-81</RefSource>
<PMID Version="1">10875926</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Metabolism. 2004 Jul;53(7):831-5</RefSource>
<PMID Version="1">15254872</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2006 Jul;116(7):1802-12</RefSource>
<PMID Version="1">16823478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetologia. 2005 Jun;48(6):1180-8</RefSource>
<PMID Version="1">15887043</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Med. 2012 Oct;62(5):381-90</RefSource>
<PMID Version="1">23114041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Mol Biol. 2005 Mar;12(3):225-32</RefSource>
<PMID Version="1">15711565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2012 Mar 2;148(5):852-71</RefSource>
<PMID Version="1">22385956</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Stress Chaperones. 2011 Sep;16(5):539-48</RefSource>
<PMID Version="1">21472505</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D064286" MajorTopicYN="N">ATP Binding Cassette Transporter 1</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000070998" MajorTopicYN="N">ATP Binding Cassette Transporter, Sub-Family G, Member 1</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000273" MajorTopicYN="N">Adipose Tissue</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002784" MajorTopicYN="N">Cholesterol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064429" MajorTopicYN="N">Fatty Acid Synthases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006003" MajorTopicYN="N">Glycogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050417" MajorTopicYN="N">Insulin-Secreting Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019344" MajorTopicYN="N">Lactic Acid</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008279" MajorTopicYN="N">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018482" MajorTopicYN="N">Muscle, Skeletal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2017</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27702832</ArticleId>
<ArticleId IdType="pii">db16-0668</ArticleId>
<ArticleId IdType="doi">10.2337/db16-0668</ArticleId>
<ArticleId IdType="pmc">PMC5132410</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001447 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001447 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27702832
   |texte=   Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27702832" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024