Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress.

Identifieur interne : 001425 ( PubMed/Corpus ); précédent : 001424; suivant : 001426

Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress.

Auteurs : Pascale Tremblay ; Andrea Gori ; Jean François Maguer ; Mia Hoogenboom ; Christine Ferrier-Pagès

Source :

RBID : pubmed:27917888

Abstract

Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals' vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.

DOI: 10.1038/srep38112
PubMed: 27917888

Links to Exploration step

pubmed:27917888

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress.</title>
<author>
<name sortKey="Tremblay, Pascale" sort="Tremblay, Pascale" uniqKey="Tremblay P" first="Pascale" last="Tremblay">Pascale Tremblay</name>
<affiliation>
<nlm:affiliation>Centre Scientifique de Monaco, Monaco.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gori, Andrea" sort="Gori, Andrea" uniqKey="Gori A" first="Andrea" last="Gori">Andrea Gori</name>
<affiliation>
<nlm:affiliation>Centre Scientifique de Monaco, Monaco.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maguer, Jean Francois" sort="Maguer, Jean Francois" uniqKey="Maguer J" first="Jean François" last="Maguer">Jean François Maguer</name>
<affiliation>
<nlm:affiliation>LEMAR - UMR 6539 UBO/CNRS/IRD, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, Plouzané, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoogenboom, Mia" sort="Hoogenboom, Mia" uniqKey="Hoogenboom M" first="Mia" last="Hoogenboom">Mia Hoogenboom</name>
<affiliation>
<nlm:affiliation>School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrier Pages, Christine" sort="Ferrier Pages, Christine" uniqKey="Ferrier Pages C" first="Christine" last="Ferrier-Pagès">Christine Ferrier-Pagès</name>
<affiliation>
<nlm:affiliation>Centre Scientifique de Monaco, Monaco.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27917888</idno>
<idno type="pmid">27917888</idno>
<idno type="doi">10.1038/srep38112</idno>
<idno type="wicri:Area/PubMed/Corpus">001425</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001425</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress.</title>
<author>
<name sortKey="Tremblay, Pascale" sort="Tremblay, Pascale" uniqKey="Tremblay P" first="Pascale" last="Tremblay">Pascale Tremblay</name>
<affiliation>
<nlm:affiliation>Centre Scientifique de Monaco, Monaco.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gori, Andrea" sort="Gori, Andrea" uniqKey="Gori A" first="Andrea" last="Gori">Andrea Gori</name>
<affiliation>
<nlm:affiliation>Centre Scientifique de Monaco, Monaco.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maguer, Jean Francois" sort="Maguer, Jean Francois" uniqKey="Maguer J" first="Jean François" last="Maguer">Jean François Maguer</name>
<affiliation>
<nlm:affiliation>LEMAR - UMR 6539 UBO/CNRS/IRD, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, Plouzané, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoogenboom, Mia" sort="Hoogenboom, Mia" uniqKey="Hoogenboom M" first="Mia" last="Hoogenboom">Mia Hoogenboom</name>
<affiliation>
<nlm:affiliation>School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrier Pages, Christine" sort="Ferrier Pages, Christine" uniqKey="Ferrier Pages C" first="Christine" last="Ferrier-Pagès">Christine Ferrier-Pagès</name>
<affiliation>
<nlm:affiliation>Centre Scientifique de Monaco, Monaco.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals' vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">27917888</PMID>
<DateCreated>
<Year>2016</Year>
<Month>12</Month>
<Day>05</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2016</Year>
<Month>Dec</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress.</ArticleTitle>
<Pagination>
<MedlinePgn>38112</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep38112</ELocationID>
<Abstract>
<AbstractText>Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals' vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tremblay</LastName>
<ForeName>Pascale</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Centre Scientifique de Monaco, Monaco.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gori</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre Scientifique de Monaco, Monaco.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maguer</LastName>
<ForeName>Jean François</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>LEMAR - UMR 6539 UBO/CNRS/IRD, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, Plouzané, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoogenboom</LastName>
<ForeName>Mia</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferrier-Pagès</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Centre Scientifique de Monaco, Monaco.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8245-50</RefSource>
<PMID Version="1">15919825</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2012 Apr 15;215(Pt 8):1384-93</RefSource>
<PMID Version="1">22442377</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Jul 25;321(5888):560-3</RefSource>
<PMID Version="1">18653892</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Mar Bio Ecol. 2000 Sep 20;252(2):221-253</RefSource>
<PMID Version="1">10967335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2015 Mar;218(Pt 6):858-63</RefSource>
<PMID Version="1">25617454</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2015 Apr 15;218(Pt 8):1223-34</RefSource>
<PMID Version="1">25722004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mar Drugs. 2010 Aug 11;8(8):2318-39</RefSource>
<PMID Version="1">20948910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Evol. 2013 May;3(5):1317-29</RefSource>
<PMID Version="1">23762518</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2006 Nov;209(Pt 22):4546-56</RefSource>
<PMID Version="1">17079724</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013 Nov 21;8(11):e81172</RefSource>
<PMID Version="1">24278392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013 Oct 11;8(10):e75049</RefSource>
<PMID Version="1">24146747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioessays. 2014 Nov;36(11):1041-9</RefSource>
<PMID Version="1">25303686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Sci Pollut Res Int. 2010 Mar;17(3):595-602</RefSource>
<PMID Version="1">19727881</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ecol Lett. 2008 Dec;11(12 ):1351-63</RefSource>
<PMID Version="1">19062363</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1379-82</RefSource>
<PMID Version="1">11607278</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1996 Nov;112(3):1005-1014</RefSource>
<PMID Version="1">12226429</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2013 Jul 15;216(Pt 14):2665-74</RefSource>
<PMID Version="1">23531826</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013 May 02;8(5):e63267</RefSource>
<PMID Version="1">23658817</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2004 Jun 4;304(5676):1492-4</RefSource>
<PMID Version="1">15178799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2008 Mar 22;275(1635):649-59</RefSource>
<PMID Version="1">18211875</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Jun 18;328(5985):1523-8</RefSource>
<PMID Version="1">20558709</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2015 Nov 22;282(1819):</RefSource>
<PMID Version="1">26582020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glob Chang Biol. 2014 Dec;20(12):3823-33</RefSource>
<PMID Version="1">25044878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Apr 27;440(7088):1186-9</RefSource>
<PMID Version="1">16641995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Rev Camb Philos Soc. 2009 Feb;84(1):1-17</RefSource>
<PMID Version="1">19046402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Rev Mar Sci. 2012;4:11-37</RefSource>
<PMID Version="1">22457967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13531-5</RefSource>
<PMID Version="1">15340154</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Apr 04;484(7392):49-54</RefSource>
<PMID Version="1">22481357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ISME J. 2008 Apr;2(4):350-63</RefSource>
<PMID Version="1">18059490</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2002 Jun 22;269(1497):1205-10</RefSource>
<PMID Version="1">12065035</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glob Chang Biol. 2015 Jan;21(1):195-205</RefSource>
<PMID Version="1">25088977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2004 Apr;207(Pt 9):1461-9</RefSource>
<PMID Version="1">15037640</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2015 Apr 15;10(4):e0123394</RefSource>
<PMID Version="1">25874963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Ecol Evol. 2005 Jun;20(6):337-44</RefSource>
<PMID Version="1">16701390</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27917888</ArticleId>
<ArticleId IdType="pii">srep38112</ArticleId>
<ArticleId IdType="doi">10.1038/srep38112</ArticleId>
<ArticleId IdType="pmc">PMC5137022</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001425 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001425 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27917888
   |texte=   Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27917888" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024