Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage.

Identifieur interne : 001329 ( PubMed/Corpus ); précédent : 001328; suivant : 001330

UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage.

Auteurs : Susana Saez-Aguayo ; Carsten Rautengarten ; Henry Temple ; Dayan Sanhueza ; Troy Ejsmentewicz ; Omar Sandoval-Iba Ez ; Daniela Do As ; Juan Pablo Parra-Rojas ; Berit Ebert ; Arnaud Lehner ; Jean-Claude Mollet ; Paul Dupree ; Henrik V. Scheller ; Joshua L. Heazlewood ; Francisca C. Reyes ; Ariel Orellana

Source :

RBID : pubmed:28062750

Abstract

UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1 These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.

DOI: 10.1105/tpc.16.00465
PubMed: 28062750

Links to Exploration step

pubmed:28062750

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage.</title>
<author>
<name sortKey="Saez Aguayo, Susana" sort="Saez Aguayo, Susana" uniqKey="Saez Aguayo S" first="Susana" last="Saez-Aguayo">Susana Saez-Aguayo</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rautengarten, Carsten" sort="Rautengarten, Carsten" uniqKey="Rautengarten C" first="Carsten" last="Rautengarten">Carsten Rautengarten</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Temple, Henry" sort="Temple, Henry" uniqKey="Temple H" first="Henry" last="Temple">Henry Temple</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanhueza, Dayan" sort="Sanhueza, Dayan" uniqKey="Sanhueza D" first="Dayan" last="Sanhueza">Dayan Sanhueza</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ejsmentewicz, Troy" sort="Ejsmentewicz, Troy" uniqKey="Ejsmentewicz T" first="Troy" last="Ejsmentewicz">Troy Ejsmentewicz</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sandoval Iba Ez, Omar" sort="Sandoval Iba Ez, Omar" uniqKey="Sandoval Iba Ez O" first="Omar" last="Sandoval-Iba Ez">Omar Sandoval-Iba Ez</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Do As, Daniela" sort="Do As, Daniela" uniqKey="Do As D" first="Daniela" last="Do As">Daniela Do As</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parra Rojas, Juan Pablo" sort="Parra Rojas, Juan Pablo" uniqKey="Parra Rojas J" first="Juan Pablo" last="Parra-Rojas">Juan Pablo Parra-Rojas</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ebert, Berit" sort="Ebert, Berit" uniqKey="Ebert B" first="Berit" last="Ebert">Berit Ebert</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lehner, Arnaud" sort="Lehner, Arnaud" uniqKey="Lehner A" first="Arnaud" last="Lehner">Arnaud Lehner</name>
<affiliation>
<nlm:affiliation>Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mollet, Jean Claude" sort="Mollet, Jean Claude" uniqKey="Mollet J" first="Jean-Claude" last="Mollet">Jean-Claude Mollet</name>
<affiliation>
<nlm:affiliation>Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dupree, Paul" sort="Dupree, Paul" uniqKey="Dupree P" first="Paul" last="Dupree">Paul Dupree</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scheller, Henrik V" sort="Scheller, Henrik V" uniqKey="Scheller H" first="Henrik V" last="Scheller">Henrik V. Scheller</name>
<affiliation>
<nlm:affiliation>Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Heazlewood, Joshua L" sort="Heazlewood, Joshua L" uniqKey="Heazlewood J" first="Joshua L" last="Heazlewood">Joshua L. Heazlewood</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reyes, Francisca C" sort="Reyes, Francisca C" uniqKey="Reyes F" first="Francisca C" last="Reyes">Francisca C. Reyes</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile aorellana@unab.cl francisca.reyes.marquez@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Orellana, Ariel" sort="Orellana, Ariel" uniqKey="Orellana A" first="Ariel" last="Orellana">Ariel Orellana</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile aorellana@unab.cl francisca.reyes.marquez@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28062750</idno>
<idno type="pmid">28062750</idno>
<idno type="doi">10.1105/tpc.16.00465</idno>
<idno type="wicri:Area/PubMed/Corpus">001329</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001329</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage.</title>
<author>
<name sortKey="Saez Aguayo, Susana" sort="Saez Aguayo, Susana" uniqKey="Saez Aguayo S" first="Susana" last="Saez-Aguayo">Susana Saez-Aguayo</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rautengarten, Carsten" sort="Rautengarten, Carsten" uniqKey="Rautengarten C" first="Carsten" last="Rautengarten">Carsten Rautengarten</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Temple, Henry" sort="Temple, Henry" uniqKey="Temple H" first="Henry" last="Temple">Henry Temple</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanhueza, Dayan" sort="Sanhueza, Dayan" uniqKey="Sanhueza D" first="Dayan" last="Sanhueza">Dayan Sanhueza</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ejsmentewicz, Troy" sort="Ejsmentewicz, Troy" uniqKey="Ejsmentewicz T" first="Troy" last="Ejsmentewicz">Troy Ejsmentewicz</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sandoval Iba Ez, Omar" sort="Sandoval Iba Ez, Omar" uniqKey="Sandoval Iba Ez O" first="Omar" last="Sandoval-Iba Ez">Omar Sandoval-Iba Ez</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Do As, Daniela" sort="Do As, Daniela" uniqKey="Do As D" first="Daniela" last="Do As">Daniela Do As</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parra Rojas, Juan Pablo" sort="Parra Rojas, Juan Pablo" uniqKey="Parra Rojas J" first="Juan Pablo" last="Parra-Rojas">Juan Pablo Parra-Rojas</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ebert, Berit" sort="Ebert, Berit" uniqKey="Ebert B" first="Berit" last="Ebert">Berit Ebert</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lehner, Arnaud" sort="Lehner, Arnaud" uniqKey="Lehner A" first="Arnaud" last="Lehner">Arnaud Lehner</name>
<affiliation>
<nlm:affiliation>Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mollet, Jean Claude" sort="Mollet, Jean Claude" uniqKey="Mollet J" first="Jean-Claude" last="Mollet">Jean-Claude Mollet</name>
<affiliation>
<nlm:affiliation>Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dupree, Paul" sort="Dupree, Paul" uniqKey="Dupree P" first="Paul" last="Dupree">Paul Dupree</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scheller, Henrik V" sort="Scheller, Henrik V" uniqKey="Scheller H" first="Henrik V" last="Scheller">Henrik V. Scheller</name>
<affiliation>
<nlm:affiliation>Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Heazlewood, Joshua L" sort="Heazlewood, Joshua L" uniqKey="Heazlewood J" first="Joshua L" last="Heazlewood">Joshua L. Heazlewood</name>
<affiliation>
<nlm:affiliation>ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reyes, Francisca C" sort="Reyes, Francisca C" uniqKey="Reyes F" first="Francisca C" last="Reyes">Francisca C. Reyes</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile aorellana@unab.cl francisca.reyes.marquez@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Orellana, Ariel" sort="Orellana, Ariel" uniqKey="Orellana A" first="Ariel" last="Orellana">Ariel Orellana</name>
<affiliation>
<nlm:affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile aorellana@unab.cl francisca.reyes.marquez@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="eISSN">1532-298X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1 These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">28062750</PMID>
<DateCreated>
<Year>2017</Year>
<Month>01</Month>
<Day>07</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-298X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage.</ArticleTitle>
<Pagination>
<MedlinePgn>129-143</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1105/tpc.16.00465</ELocationID>
<Abstract>
<AbstractText>UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1 These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.</AbstractText>
<CopyrightInformation>© 2017 American Society of Plant Biologists. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saez-Aguayo</LastName>
<ForeName>Susana</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rautengarten</LastName>
<ForeName>Carsten</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Temple</LastName>
<ForeName>Henry</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sanhueza</LastName>
<ForeName>Dayan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ejsmentewicz</LastName>
<ForeName>Troy</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sandoval-Ibañez</LastName>
<ForeName>Omar</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doñas</LastName>
<ForeName>Daniela</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-7703-5613</Identifier>
<AffiliationInfo>
<Affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parra-Rojas</LastName>
<ForeName>Juan Pablo</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ebert</LastName>
<ForeName>Berit</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lehner</LastName>
<ForeName>Arnaud</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4442-1731</Identifier>
<AffiliationInfo>
<Affiliation>Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mollet</LastName>
<ForeName>Jean-Claude</ForeName>
<Initials>JC</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-8717-0034</Identifier>
<AffiliationInfo>
<Affiliation>Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dupree</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-9270-6286</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scheller</LastName>
<ForeName>Henrik V</ForeName>
<Initials>HV</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6702-3560</Identifier>
<AffiliationInfo>
<Affiliation>Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, California 94720.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heazlewood</LastName>
<ForeName>Joshua L</ForeName>
<Initials>JL</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2080-3826</Identifier>
<AffiliationInfo>
<Affiliation>ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reyes</LastName>
<ForeName>Francisca C</ForeName>
<Initials>FC</Initials>
<AffiliationInfo>
<Affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile aorellana@unab.cl francisca.reyes.marquez@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Orellana</LastName>
<ForeName>Ariel</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9243-808X</Identifier>
<AffiliationInfo>
<Affiliation>Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile aorellana@unab.cl francisca.reyes.marquez@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/D010446/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Glycobiology. 2016 Sep;26(9):913-925</RefSource>
<PMID Version="1">27507902</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2006 Jul 24;580(17):4246-51</RefSource>
<PMID Version="1">16831428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glycobiology. 2005 Feb;15(2):193-201</RefSource>
<PMID Version="1">15456736</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2015 Apr;27(4):1218-27</RefSource>
<PMID Version="1">25804536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2003 Aug 1;301(5633):653-7</RefSource>
<PMID Version="1">12893945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2005 Jun;221(4):538-48</RefSource>
<PMID Version="1">15655675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2000 Feb;122(2):345-56</RefSource>
<PMID Version="1">10677428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2016 May;171(1):165-78</RefSource>
<PMID Version="1">26979331</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2007 Sep;51(6):1126-36</RefSource>
<PMID Version="1">17666025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Plant Res. 2016 Sep;129(5):781-92</RefSource>
<PMID Version="1">27220955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 May 4;107(18):8063-70</RefSource>
<PMID Version="1">20385809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2005 Feb;220(4):582-92</RefSource>
<PMID Version="1">15449057</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2000 Nov;12(11):2201-18</RefSource>
<PMID Version="1">11090219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glycobiology. 2007 Mar;17(3):345-54</RefSource>
<PMID Version="1">17182701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 1998 Dec;16(6):735-43</RefSource>
<PMID Version="1">10069079</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2007 May;19(5):1565-79</RefSource>
<PMID Version="1">17496119</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2008 Dec 23;18(24):1943-8</RefSource>
<PMID Version="1">19097903</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2005 Oct;222(3):521-9</RefSource>
<PMID Version="1">15891899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):2085-90</RefSource>
<PMID Version="1">9050909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2004 Jun;7(3):277-84</RefSource>
<PMID Version="1">15134748</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2006 Nov;18(11):3182-200</RefSource>
<PMID Version="1">17138701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2008 Jun;20(6):1494-503</RefSource>
<PMID Version="1">18523061</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2001 May;213(1):37-44</RefSource>
<PMID Version="1">11523654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2001 Oct;13(10):2283-95</RefSource>
<PMID Version="1">11595802</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2011 Apr;23(4):1373-90</RefSource>
<PMID Version="1">21478444</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Genet Genomics. 2004 Nov;272(4):397-410</RefSource>
<PMID Version="1">15480787</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Apr 7;281(14):9145-51</RefSource>
<PMID Version="1">16467298</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2004 Dec;136(4):4256-64</RefSource>
<PMID Version="1">15563616</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pharm Sci. 2014 Oct;103(10 ):3342-8</RefSource>
<PMID Version="1">25175747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1995 Apr;107(4):1129-38</RefSource>
<PMID Version="1">7770522</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2007 Jun;50(5):810-24</RefSource>
<PMID Version="1">17470058</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2015 Apr;82(2):208-20</RefSource>
<PMID Version="1">25704846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Physiol. 2007 Jul;48(7):984-99</RefSource>
<PMID Version="1">17540691</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2003 Sep;35(6):693-703</RefSource>
<PMID Version="1">12969423</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2002 Sep 6;277(36):32923-9</RefSource>
<PMID Version="1">12042319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant. 2016 Aug 1;9(8):1119-31</RefSource>
<PMID Version="1">27179920</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2015 Jan;115(1):55-66</RefSource>
<PMID Version="1">25434027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2016 Jul 06;7:12119</RefSource>
<PMID Version="1">27381418</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2002 May;7(5):193-5</RefSource>
<PMID Version="1">11992820</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2003 Mar;131(3):1178-90</RefSource>
<PMID Version="1">12644669</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant. 2012 Nov;5(6):1263-80</RefSource>
<PMID Version="1">22933714</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2001 Nov;127(3):998-1011</RefSource>
<PMID Version="1">11706181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2015 Dec;169(4):2481-95</RefSource>
<PMID Version="1">26482889</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2008 Jun;11(3):244-51</RefSource>
<PMID Version="1">18485801</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2004 Jun;7(3):285-95</RefSource>
<PMID Version="1">15134749</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2008 Jun;20(6):1623-38</RefSource>
<PMID Version="1">18523060</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2004 Jul;135(3):1221-30</RefSource>
<PMID Version="1">15247385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Carbohydr Res. 2009 Jun 12;344(9):1072-8</RefSource>
<PMID Version="1">19375693</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Carbohydr Res. 2009 Sep 28;344(14 ):1858-62</RefSource>
<PMID Version="1">19144326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Physiol. 2010 Oct;51(10):1694-706</RefSource>
<PMID Version="1">20798276</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2001 Sep;127(1):360-71</RefSource>
<PMID Version="1">11553763</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biosci Biotechnol Biochem. 2007 Mar;71(3):761-71</RefSource>
<PMID Version="1">17341835</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2003 Feb;15(2):523-31</RefSource>
<PMID Version="1">12566589</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2011 Nov 18;286(46):39982-92</RefSource>
<PMID Version="1">21949134</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2011;62:127-55</RefSource>
<PMID Version="1">21370975</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Struct Biol. 2000 Oct;10(5):542-7</RefSource>
<PMID Version="1">11042451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2010 Aug;153(4):1563-76</RefSource>
<PMID Version="1">20547702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1989 Dec 14;342(6251):837-8</RefSource>
<PMID Version="1">2689886</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17409-14</RefSource>
<PMID Version="1">20852069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2007 Nov;52(3):570-82</RefSource>
<PMID Version="1">17764500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2002 Dec;130(4):2188-98</RefSource>
<PMID Version="1">12481102</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2012 Jan;40(Database issue):D48-53</RefSource>
<PMID Version="1">22144687</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2004 Jan;134(1):296-306</RefSource>
<PMID Version="1">14701918</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11563-8</RefSource>
<PMID Version="1">25053812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2004 Jun 16;52(12):3749-53</RefSource>
<PMID Version="1">15186092</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2000 Mar;122(3):867-77</RefSource>
<PMID Version="1">10712551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2009 Nov 11;424(2):169-77</RefSource>
<PMID Version="1">19754426</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2016 Aug 14;428(16):3150-65</RefSource>
<PMID Version="1">27261257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 1998 Aug;15(3):441-7</RefSource>
<PMID Version="1">9750355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2009 Aug 7;284(32):21526-35</RefSource>
<PMID Version="1">19509290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2010 Feb 1;61(3):423-35</RefSource>
<PMID Version="1">19906043</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2008 Nov;56(3):483-92</RefSource>
<PMID Version="1">18643981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2013 Jan;25(1):308-23</RefSource>
<PMID Version="1">23362209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2010 Mar;61(6):1107-21</RefSource>
<PMID Version="1">20409281</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2005 Jan;137(1):274-86</RefSource>
<PMID Version="1">15618431</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2016 Mar;67(5):1243-57</RefSource>
<PMID Version="1">26834178</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1991 Mar 25;19(6):1349</RefSource>
<PMID Version="1">2030957</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>11</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28062750</ArticleId>
<ArticleId IdType="pii">tpc.16.00465</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.16.00465</ArticleId>
<ArticleId IdType="pmc">PMC5304346</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001329 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001329 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28062750
   |texte=   UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28062750" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024