Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-frequency neuromuscular electrical stimulation modulates interhemispheric inhibition in healthy humans.

Identifieur interne : 001262 ( PubMed/Corpus ); précédent : 001261; suivant : 001263

High-frequency neuromuscular electrical stimulation modulates interhemispheric inhibition in healthy humans.

Auteurs : Nicolas Gueugneau ; Sidney Grosprêtre ; Paul Stapley ; Romuald Lepers

Source :

RBID : pubmed:27832594

English descriptors

Abstract

High-frequency neuromuscular electrical stimulation (HF NMES) induces muscular contractions through neural mechanisms that partially match physiological motor control. Indeed, a portion of the contraction arises from central mechanisms, whereby spinal motoneurons are recruited through the evoked sensory volley. However, the involvement of supraspinal centers of motor control during such stimulation remains poorly understood. Therefore, we tested whether a single HF NMES session applied to the upper limb influences interhemispheric inhibition (IHI) from left to right motor cortex (M1). Using noninvasive electrophysiology and transcranial magnetic stimulation, we evaluated the effects of a 10-min HF NMES session applied to a right wrist flexor on spinal and corticospinal excitability of both arms, as well as IHI, in healthy subjects. HF NMES induced a rapid decline in spinal excitability on the right stimulated side that closely matched the modulation of evoked force during the protocol. More importantly, IHI was significantly increased by HF NMES, and this increase was correlated to the electromyographic activity within the contralateral homologous muscle. Our study highlights a new neurophysiological mechanism, suggesting that HF NMES has an effect on the excitability of the transcallosal pathway probably to regulate the lateralization of the motor output. The data suggest that HF NMES can modify the hemispheric balance between both M1 areas. These findings provide important novel perspectives for the implementation of HF NMES in sport training and neurorehabilitation.

DOI: 10.1152/jn.00355.2016
PubMed: 27832594

Links to Exploration step

pubmed:27832594

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High-frequency neuromuscular electrical stimulation modulates interhemispheric inhibition in healthy humans.</title>
<author>
<name sortKey="Gueugneau, Nicolas" sort="Gueugneau, Nicolas" uniqKey="Gueugneau N" first="Nicolas" last="Gueugneau">Nicolas Gueugneau</name>
<affiliation>
<nlm:affiliation>Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France; ngueugneau@netcourrier.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grospretre, Sidney" sort="Grospretre, Sidney" uniqKey="Grospretre S" first="Sidney" last="Grosprêtre">Sidney Grosprêtre</name>
<affiliation>
<nlm:affiliation>Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stapley, Paul" sort="Stapley, Paul" uniqKey="Stapley P" first="Paul" last="Stapley">Paul Stapley</name>
<affiliation>
<nlm:affiliation>Neural Control of Movement Laboratory, Faculty of Science, Medicine, and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lepers, Romuald" sort="Lepers, Romuald" uniqKey="Lepers R" first="Romuald" last="Lepers">Romuald Lepers</name>
<affiliation>
<nlm:affiliation>Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27832594</idno>
<idno type="pmid">27832594</idno>
<idno type="doi">10.1152/jn.00355.2016</idno>
<idno type="wicri:Area/PubMed/Corpus">001262</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001262</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">High-frequency neuromuscular electrical stimulation modulates interhemispheric inhibition in healthy humans.</title>
<author>
<name sortKey="Gueugneau, Nicolas" sort="Gueugneau, Nicolas" uniqKey="Gueugneau N" first="Nicolas" last="Gueugneau">Nicolas Gueugneau</name>
<affiliation>
<nlm:affiliation>Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France; ngueugneau@netcourrier.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grospretre, Sidney" sort="Grospretre, Sidney" uniqKey="Grospretre S" first="Sidney" last="Grosprêtre">Sidney Grosprêtre</name>
<affiliation>
<nlm:affiliation>Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stapley, Paul" sort="Stapley, Paul" uniqKey="Stapley P" first="Paul" last="Stapley">Paul Stapley</name>
<affiliation>
<nlm:affiliation>Neural Control of Movement Laboratory, Faculty of Science, Medicine, and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lepers, Romuald" sort="Lepers, Romuald" uniqKey="Lepers R" first="Romuald" last="Lepers">Romuald Lepers</name>
<affiliation>
<nlm:affiliation>Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neurophysiology</title>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Analysis of Variance</term>
<term>Biophysics</term>
<term>Electromyography</term>
<term>Evoked Potentials, Motor (physiology)</term>
<term>Functional Laterality (physiology)</term>
<term>H-Reflex (physiology)</term>
<term>Humans</term>
<term>Male</term>
<term>Median Nerve (physiology)</term>
<term>Middle Aged</term>
<term>Muscle Contraction (physiology)</term>
<term>Muscle, Skeletal (physiology)</term>
<term>Neural Inhibition (physiology)</term>
<term>Transcranial Magnetic Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Evoked Potentials, Motor</term>
<term>Functional Laterality</term>
<term>H-Reflex</term>
<term>Median Nerve</term>
<term>Muscle Contraction</term>
<term>Muscle, Skeletal</term>
<term>Neural Inhibition</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Analysis of Variance</term>
<term>Biophysics</term>
<term>Electromyography</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Transcranial Magnetic Stimulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High-frequency neuromuscular electrical stimulation (HF NMES) induces muscular contractions through neural mechanisms that partially match physiological motor control. Indeed, a portion of the contraction arises from central mechanisms, whereby spinal motoneurons are recruited through the evoked sensory volley. However, the involvement of supraspinal centers of motor control during such stimulation remains poorly understood. Therefore, we tested whether a single HF NMES session applied to the upper limb influences interhemispheric inhibition (IHI) from left to right motor cortex (M1). Using noninvasive electrophysiology and transcranial magnetic stimulation, we evaluated the effects of a 10-min HF NMES session applied to a right wrist flexor on spinal and corticospinal excitability of both arms, as well as IHI, in healthy subjects. HF NMES induced a rapid decline in spinal excitability on the right stimulated side that closely matched the modulation of evoked force during the protocol. More importantly, IHI was significantly increased by HF NMES, and this increase was correlated to the electromyographic activity within the contralateral homologous muscle. Our study highlights a new neurophysiological mechanism, suggesting that HF NMES has an effect on the excitability of the transcallosal pathway probably to regulate the lateralization of the motor output. The data suggest that HF NMES can modify the hemispheric balance between both M1 areas. These findings provide important novel perspectives for the implementation of HF NMES in sport training and neurorehabilitation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27832594</PMID>
<DateCreated>
<Year>2016</Year>
<Month>11</Month>
<Day>10</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>117</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of neurophysiology</Title>
<ISOAbbreviation>J. Neurophysiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>High-frequency neuromuscular electrical stimulation modulates interhemispheric inhibition in healthy humans.</ArticleTitle>
<Pagination>
<MedlinePgn>467-475</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/jn.00355.2016</ELocationID>
<Abstract>
<AbstractText>High-frequency neuromuscular electrical stimulation (HF NMES) induces muscular contractions through neural mechanisms that partially match physiological motor control. Indeed, a portion of the contraction arises from central mechanisms, whereby spinal motoneurons are recruited through the evoked sensory volley. However, the involvement of supraspinal centers of motor control during such stimulation remains poorly understood. Therefore, we tested whether a single HF NMES session applied to the upper limb influences interhemispheric inhibition (IHI) from left to right motor cortex (M1). Using noninvasive electrophysiology and transcranial magnetic stimulation, we evaluated the effects of a 10-min HF NMES session applied to a right wrist flexor on spinal and corticospinal excitability of both arms, as well as IHI, in healthy subjects. HF NMES induced a rapid decline in spinal excitability on the right stimulated side that closely matched the modulation of evoked force during the protocol. More importantly, IHI was significantly increased by HF NMES, and this increase was correlated to the electromyographic activity within the contralateral homologous muscle. Our study highlights a new neurophysiological mechanism, suggesting that HF NMES has an effect on the excitability of the transcallosal pathway probably to regulate the lateralization of the motor output. The data suggest that HF NMES can modify the hemispheric balance between both M1 areas. These findings provide important novel perspectives for the implementation of HF NMES in sport training and neurorehabilitation.</AbstractText>
<AbstractText Label="NEW & NOTEWORTHY" NlmCategory="UNASSIGNED">High-frequency neuromuscular electrical stimulation (HF NMES) induces muscular contractions that partially match physiological motor control. Here, we tested whether HF NMES applied to the upper limb influences interhemispheric inhibition. Our results show that interhemispheric inhibition was increased after HF NMES and that this increase was correlated to the electromyographic activity within the contralateral homologous muscle. This opens up original perspectives for the implementation of HF NMES in sport training and neurorehabilitation.</AbstractText>
<CopyrightInformation>Copyright © 2017 the American Physiological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gueugneau</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France; ngueugneau@netcourrier.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Bourgogne-Franche Comté, CAPS UMR 1093, Dijon, France; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grosprêtre</LastName>
<ForeName>Sidney</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Bourgogne-Franche Comté, CAPS UMR 1093, Dijon, France; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stapley</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Neural Control of Movement Laboratory, Faculty of Science, Medicine, and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lepers</LastName>
<ForeName>Romuald</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Bourgogne-Franche Comté, CAPS UMR 1093, Dijon, France; and.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurophysiol</MedlineTA>
<NlmUniqueID>0375404</NlmUniqueID>
<ISSNLinking>0022-3077</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2011 Mar;110(3):627-37</RefSource>
<PMID Version="1">21183628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2015 Jul;126(7):1400-12</RefSource>
<PMID Version="1">25454283</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2008 Jul;28(2):364-71</RefSource>
<PMID Version="1">18702707</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2004 Feb;115(2):255-66</RefSource>
<PMID Version="1">14744565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2006 Apr;117(4):855-63</RefSource>
<PMID Version="1">16448846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 May 28;28(22):5631-40</RefSource>
<PMID Version="1">18509024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1996 Mar;108(3):450-62</RefSource>
<PMID Version="1">8801125</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Phys Med Rehabil. 2011 Sep;92(9):1423-30</RefSource>
<PMID Version="1">21620374</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2012 Jun;107(11):3086-94</RefSource>
<PMID Version="1">22422998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2001 Aug;112(8):1461-9</RefSource>
<PMID Version="1">11459686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Ther. 2005 Apr;85(4):358-64</RefSource>
<PMID Version="1">15794706</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1976 May;39(3):484-500</RefSource>
<PMID Version="1">133213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1989;78(1):28-32</RefSource>
<PMID Version="1">2591515</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exerc Sport Sci Rev. 2007 Jul;35(3):102-9</RefSource>
<PMID Version="1">17620928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1976 May;257(1):199-227</RefSource>
<PMID Version="1">820853</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2014 Aug;40(3):2581-8</RefSource>
<PMID Version="1">24819225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2007 Feb;19(2):204-13</RefSource>
<PMID Version="1">17280510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2015 May 1;118(9):1136-44</RefSource>
<PMID Version="1">25767032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2014 Oct;24(10):2807-14</RefSource>
<PMID Version="1">23709641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2009 Jul;107(1):161-7</RefSource>
<PMID Version="1">19390001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2011 Mar;122(3):456-63</RefSource>
<PMID Version="1">20739217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2009 Nov 15;587(Pt 22):5393-410</RefSource>
<PMID Version="1">19770195</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2012 Nov;123(11):2247-55</RefSource>
<PMID Version="1">22627022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2004 Jul 1;558(Pt 1):341-9</RefSource>
<PMID Version="1">15146048</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 1987;28(4):345-76</RefSource>
<PMID Version="1">3588965</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Appl Physiol. 2011 Oct;111(10):2439-49</RefSource>
<PMID Version="1">21643920</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sports Med. 1992 Aug;14(2):100-13</RefSource>
<PMID Version="1">1509225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2014 May 15;116(10):1281-9</RefSource>
<PMID Version="1">24674861</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2008 Feb;185(2):189-97</RefSource>
<PMID Version="1">17932663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2006 Aug;5(8):708-12</RefSource>
<PMID Version="1">16857577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2010 May;203(1):11-20</RefSource>
<PMID Version="1">20217400</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2015 Jun 1;113(10):3700-7</RefSource>
<PMID Version="1">25810483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Sci (Lond). 2015 Mar;128(6):357-65</RefSource>
<PMID Version="1">25296344</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Respir Physiol Neurobiol. 2007 Aug 1;157(2-3):341-7</RefSource>
<PMID Version="1">17210271</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2004 Nov 15;561(Pt 1):331-8</RefSource>
<PMID Version="1">15459244</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1992;453:525-46</RefSource>
<PMID Version="1">1464843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Brain Res Rev. 2005 Nov;49(3):641-62</RefSource>
<PMID Version="1">15904971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Tremor Other Hyperkinet Mov (N Y). 2012;2:null</RefSource>
<PMID Version="1">23440079</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Athl Train. 2004 Jul;39(3):268-77</RefSource>
<PMID Version="1">16558683</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Ther Sci. 2015 Jul;27(7):2117-20</RefSource>
<PMID Version="1">26311936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Sports Med. 2005 Dec;26(10):847-53</RefSource>
<PMID Version="1">16320169</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2007 Jul;103(1):170-6</RefSource>
<PMID Version="1">17463296</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2004 Mar;55(3):400-9</RefSource>
<PMID Version="1">14991818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2011 Mar;209(3):355-63</RefSource>
<PMID Version="1">21286692</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Med. 2013 May 23;11:137</RefSource>
<PMID Version="1">23701811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Appl Physiol. 2011 Oct;111(10):2409-26</RefSource>
<PMID Version="1">21805156</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2002 May;3(5):348-59</RefSource>
<PMID Version="1">11988774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2012 Mar;107(6):1649-54</RefSource>
<PMID Version="1">22190624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2009 Dec;15(10):758-61</RefSource>
<PMID Version="1">19505838</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Man Ther. 2012 Apr;17(2):184-6</RefSource>
<PMID Version="1">22197081</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2010 Apr;121(4):612-21</RefSource>
<PMID Version="1">20097605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Muscle Nerve. 2014 Oct;50(4):604-7</RefSource>
<PMID Version="1">24797162</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 Sep;96(3):1293-302</RefSource>
<PMID Version="1">16611843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Mar 2;31(9):3423-8</RefSource>
<PMID Version="1">21368053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2008 Mar;186(1):59-66</RefSource>
<PMID Version="1">18040671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2007 Aug;181(4):615-26</RefSource>
<PMID Version="1">17487476</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2012 Jul;113(2):215-23</RefSource>
<PMID Version="1">22556396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2002 Jan 1;538(Pt 1):289-301</RefSource>
<PMID Version="1">11773336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2001 Jun 1;21(11):4059-65</RefSource>
<PMID Version="1">11356893</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Motor Control. 1999 Apr;3(2):205-19</RefSource>
<PMID Version="1">10198150</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2006 Jul;101(1):228-40</RefSource>
<PMID Version="1">16627680</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Jan 31;27(5):1045-53</RefSource>
<PMID Version="1">17267558</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001703" MajorTopicYN="N">Biophysics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004576" MajorTopicYN="N">Electromyography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019054" MajorTopicYN="N">Evoked Potentials, Motor</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007839" MajorTopicYN="N">Functional Laterality</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006181" MajorTopicYN="N">H-Reflex</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008475" MajorTopicYN="N">Median Nerve</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009119" MajorTopicYN="N">Muscle Contraction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018482" MajorTopicYN="N">Muscle, Skeletal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009433" MajorTopicYN="N">Neural Inhibition</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050781" MajorTopicYN="Y">Transcranial Magnetic Stimulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">corticospinal excitability</Keyword>
<Keyword MajorTopicYN="N">upper limb</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2018</Year>
<Month>01</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27832594</ArticleId>
<ArticleId IdType="pii">jn.00355.2016</ArticleId>
<ArticleId IdType="doi">10.1152/jn.00355.2016</ArticleId>
<ArticleId IdType="pmc">PMC5263217</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001262 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001262 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27832594
   |texte=   High-frequency neuromuscular electrical stimulation modulates interhemispheric inhibition in healthy humans.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27832594" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024